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Abstract. Industries with safety-critical systems increasingly collect
data on events occurring at the level of system components, thus cap-
turing instances of system failure or malfunction. With data availability,
it becomes possible to automatically learn a model describing the fail-
ure modes of the system, i.e., how the states of individual components
combine to cause a system failure. We present LIFT, a machine learning
method for static fault trees directly out of observational datasets. The
fault trees model probabilistic causal chains of events ending in a global
system failure. Our method makes use of the Mantel-Haenszel statis-
tical test to narrow down possible causal relationships between events.
We evaluate LIFT with synthetic case studies, show how its performance
varies with the quality of the data, and discuss practical variants of LIFT.

1 Introduction

Fault tree (FT) analysis [1] is a widely applied method to analyse the safety
of high-tech systems, such as self-driving cars, drones and robots. FTs model
how system failures occur as a result of component failures: the leaves of the
tree model different failure modes, while the fault tree gates model how failure
modes propagate through the system and lead to system failures. A wide number
of metrics, such as the system reliability and availability, can then be computed
to evaluate whether a system meets its dependability and safety requirements.

A key bottleneck is the construction of the FT. This requires domain knowl-
edge, and the number of potential failure causes and contributing factors can be
overwhelming: age, system loads, usage patterns and environmental conditions
can all influence the failure mechanisms. It is thus appealing to learn FTs auto-
matically from data, to assist reliability engineers in tackling the complexity of
today’s systems. This paper is a first step in this direction: we learn static FTs
from observational records.

The fault-tree formalism. The nodes in an FT are either events or logical
gates. Fig. 1 shows an example FT and the graphical notation. A part of the
system is modelled by an intermediate event ; a special intermediate event is
the root node of the tree, called the top event or outcome, which models the
global system failure. A set of basic events, distinct from the intermediate events,
marks the most elementary faults in system components, may be annotated
with a probability of occurrence, and form the leaves of the FT. Intermediate
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events form the inputs and the output of any gate, and are the output of any
basic event. The basic gates, AND and OR, denoted by the standard logic-gate
symbols, model their standard logic meaning, in terms of causal relationships
between the events in the input and the event in the output of any gate.
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E Intermediate event

Intermediate event

Top event

Basic event

Fig. 1: Example fault tree with annotations

Summary of contribution. We learn static FTs with Boolean event vari-
ables (where an event variable has value True or 1 if that fault occurs in the
system), n-ary AND/OR gates, and annotated with event failure probabilities.
The input to the algorithm consists of raw, untimed observational data over
the system under study, i.e., a dataset where each row is a single observation
over the entire system, and each column variable records the value of a system
event. All intermediate events to be included in the FT must be present in the
dataset, but not all of those events in the dataset may be needed in the FT. We
do not know what the basic events will be, nor which gates form the FT, nor
which intermediate events are attached to the gates. We know the top event:
the system failure of interest. Our main result is an algorithm that learns a sta-
tistically significant FT; we allow for a user-specified amount of noise, assumed
uniformly distributed in the data. We evaluate the algorithm on synthetic data:
given a “ground truth” FT, we synthesise a random dataset, apply the learning
algorithm, and then compare the machine-learnt FT to the ground truth.

An example dataset is shown in Fig. 2a, in compact form: each row is a count
(e.g., 20) of identical records, where each record is an untimed list of Boolean
observations of events (denoted A,B,C and T , with T the global system failure,
or outcome). The order of the records in a dataset is not significant.

A tree formalism commonly machine-learnt from such observational data is
the Binary Decision Tree (BDT), a practical tool for the description, classifica-
tion and generalisation of data [2]. The BDT learning algorithm appears to be a
natural starting point for the design of an FT learning algorithm; however, we
argue below why the BDT learning logic is unsatisfactory.

Detecting causality from data. The construction of a BDT is a greedy
algorithm: a series of local optimum decisions determines subsequent branching
nodes. Each decision uses a variable test condition (e.g., a classification error)
to find the best split in the data records [3]. For example, when creating a BDT
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A B C T count

0 0 0 0 20
0 1 1 1 5
0 0 1 1 5
1 1 1 1 30
1 1 0 1 20
0 1 0 1 20
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Fig. 2: An example showing that a BDT does not encode causal relationships.

for the dataset in Fig. 2a to classify variable T , a naive approach is to first split
the dataset on variable A, and obtain the BDT in Fig. 2b. However, decision
trees model correlations (which are symmetric) and not the causal relationships
(which are asymmetric) required for an FT. As a correlation between variables
does not imply a causation, the knowledge represented in a decision tree does
not provide root causes for faults, and thus cannot support decision making.

To overcome this problem, the Causal Decision Tree (CDT) [4] was recently
introduced. A CDT differs from a BDT in that each of its non-leaf nodes has a
causal interpretation with respect to the outcome T . CDTs find causal relation-
ships automatically by using the Mantel-Haenszel statistical test [5]. A causal
relationship between a variable and the outcome exists if the causal effect is
statistically significant (i.e., is above random chance). A CDT for the dataset in
Fig. 2a is in Fig. 2c; it shows that C has a causal relationship with T and that B
has a causal relationship with T under the “context” (i.e., fixed variable assign-
ment) C = 0. A is not included in this CDT. The path (A = 1)→ (T = 1) in the
BDT with probability P (T = 1|A = 1) = 1 correctly classifies half of the records
in the dataset. However, the path does not code a causal relationship between A
and T since, for example, given C = 1, P (T = 1|A = 1)− P (T = 1|A = 0) = 0.
When fixing the value of C, a change in A does not result in a change in T . In
fact, C causes T , and B causes T under the context C = 0.

CDTs on average achieve similar classification accuracy as decision trees, even
though this is not a CDT objective; also, the size of CDTs is on average half that
of decision trees [4], simplifying their analysis. Some aspects of CDT learning are
useful in the automatic construction of an FT. However, while a CDT can only
model the causal relationship between a variable and the outcome, the strength
of an FT is the additional modelling of (a) multiple independent variables that
may cause a failure, and (b) if-then Boolean logic. As shown in Fig. 2d, the CDT
of Fig. 2c can be redrawn as an FT with a single OR gate.

In the following, Sect. 2 gives the related work on the automated synthesis of
fault trees. Sect. 3 formally introduces FTs. Sect. 4 presents the LIFT algorithm
and examples. Sect. 5 evaluates LIFT on datasets with noise or superfluous
variables. Sect. 6 discusses possible LIFT variants. The conclusions, including
future work, are presented in Sect. 7.
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2 Related Work

System dependability evaluation via fault tree analysis is largely a manual pro-
cess, performed over informal fault-tree models which will not accurately describe
an evolving system [6]. Due to this, the automatic synthesis of fault trees has
been of recent interest. However, we stress the fact that most of the existing con-
tributions generate the necessary dependability information from existing, for-
mal system models, and are thus Model-Based Dependability Analysis (MBDA)
techniques [6–8]. In contrast, there is little research aiming to synthesise causal
dependability information for black-box systems, for which formal models do not
exist, or for which the quantity and quality of the available sensed data surpasses
the quality and completeness of existing system models.

Learning fault trees from data. Observational data was used for machine-
learning fault trees in the Induction of Fault Trees (IFT) algorithm [9], based on
decision-tree learning. As in our method, all that is needed are observations of
measurable quantities taking certain values. However, IFT completely disregards
the matter of causality between events, and essentially learns a syntactically
correct FT which encodes exactly the same information as a decision tree – so
the FT is essentially a classifier, rather than a means of modelling causal effect.

Generating fault trees from formal system models. A diverse body
of techniques is available for this; we refer to recent reviews on MBDA for a
complete picture [6–8] and give here a brief overview of the most relevant gen-
eration methods. While these approaches cannot directly synthesise FTs from
observational data (as in our work), other techniques able to learn the required
system models from observational data could (indirectly) bridge this gap.

In the Hierarchically Performed Hazard Origin & Propagation Studies (HiP-
HOPS) framework [10], any system model formalising the transactions among
the system components, annotated with failure information for components (as
Boolean expressions), may be used to synthesise an FT. Using these annotations,
the synthesis is straightforward: it proceeds top-down from the top event and cre-
ates local FTs based on the component failure annotations; these are then merged
into a global FT showing all combinations leading to system failure. If formal
models in the AltaRica high-level system description language are available,
they include explicit transitions modelling causal relations between state vari-
ables and events, which can similarly be used to synthesise classic FTs [11]. The
Formal Safety Analysis Platform (FSAP/NuSMV-SA) generates, from NuSMV
system models, FTs which show only the relation between top events and basic
events, and not how faults propagate among the system components [12]. The
Architecture Analysis and Design Language (AADL) includes an Error Model
for the specification of fault information, and a number of techniques exist to
translate an AADL model into static or dynamic FTs (recently, in [13]). AADL
models have also been translated into models compatible with the HiP-HOPS
and AltaRica frameworks, enabling cross-framework FT synthesis [6].

A process of FT generation with explicit reasoning about causality is de-
scribed in [14]; however, this approach still requires a formal system model to
exist. Given such a probabilistic system model, a set of probabilistic counterex-
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amples (i.e., system execution paths of temporally ordered, interleaved events
leading to a system fault) is obtained from the process of model-checking. As
the system is concurrent, the counterexamples potentially, but not necessarily,
model causality. Logical combinations of events are determined as causes of other
events using a set of test conditions; the time complexity is cubic in the size of
the set of counterexamples.

Other approaches. Causal Bayesian Networks (CBNs) [15] can also be
learnt from observational data, as well as Boolean formulas (BFs) [16]; both
models may be translated into FTs, and both learning problems are NP-hard
or require exponential time [17, 16]. As our algorithm will also be shown to
have a worst-case exponential complexity, both CBNs and BFs remain feasible
alternatives to FT learning.

3 Background: Fault Trees

We define the basic components of an FT formally in Definitions 1–4.

Definition 1. A gate G is a tuple 〈t, I, O〉, where:

– t is the type of G, with t ∈ {And ,Or}.
– I is a set of n ≥ 2 intermediate events {i1, ..., in} that are inputs to G.
– O is the intermediate event that is output for G.

We denote by I(G) the set of intermediate events in the input of G, and by O(G)
the intermediate event in the output of G.

Definition 2. An AND gate is a gate 〈And , I, O〉 where output O occurs (i.e.
O is True) if and only if every i ∈ I occurs.

Definition 3. An OR gate is a gate 〈Or , I, O〉 where output O occurs (i.e. O
is True) if and only if at least one i ∈ I occurs.

Definition 4. A basic event B is an event with no input and one intermediate
event as output. We denote by O(B) the intermediate event in the output of B.

Intuitively, a basic event B models an elementary system fault in the real
world; its output O(B) is True when this elementary system fault occurs. Then,
all system components modelled by the events in the input of an AND gate must
fail in order for the system modelled by the event in the output to fail.

We then formalise the fault tree in Definition 5.

Definition 5. A fault tree F is a tuple 〈BE, IE, T,G〉, where:

– BE is the set of basic events; ∀B ∈ BE, O(B) ∈ IE. A basic event may be
annotated with a probability of occurrence p.

– IE is the set of intermediate events, where IE ∩BE = ∅.
– T is the top event, T ∈ IE.
– G is the set of gates; ∀G ∈ G, I(G) ⊂ IE, O(G) ∈ IE.
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– The graph formed by G should be connected and acyclic, with the top event
T as unique root.

Given fault tree F, we denote by IE (F) the set of intermediate events in F.

The basic LIFT algorithm (Sect. 4) will learn trees rather than directed
acyclic graphs (DAGs), i.e. an intermediate event can be the input of only one
gate. Sect. 6 will then discuss a DAG variant of the LIFT algorithm.

Comparison FT-CDT. Unlike FTs, CDTs can be learnt from data, and
also encode causal relationships between variables; an example CDT was given
in Fig. 2c. However, there are major syntactic differences between the two for-
malisms. An FT can be n-ary, while a CDT can only be binary: every branching
decision is based on a Boolean variable. Also, an FT is more concise: it models
only the positive (failure) outcome, while the CDT must model both outcomes
of any variable. Finally, the position of the outcome differs: while in FTs the top
event models the system outcome, in a CDT this is modelled by leaf nodes.

4 Machine Learning Fault Trees

The dataset from which an FT can be learnt contains untimed, Boolean obser-
vations of system events; an FT event corresponds to a column variable in the
dataset. A record and a dataset are formally defined in Definitions 6–7.

Definition 6. A record R over the set of variables V is a list of length |V|
containing tuples [〈Vi, vi〉], 1 ≤ i ≤ |V|, where:

– Vi is a variable name, Vi ∈ V.
– vi is a Boolean value of Vi.

Definition 7. A dataset D is a set of r records, all over the same set of vari-
ables V. Each variable name in V forms a column in D and each record forms
a row. When k identical records are present in D, a single such record is shown,
with a new count column for the value k.

A synthetic dataset (of 185 records in total, but only 11 unique records) is
shown in Table 1. We assume the sufficiency of any dataset (i.e., all shared causes
are measured [18]) and also its faithfulness (i.e., the data accurately represents
the real-world dependencies [18]). However, because of either sensor glitches or
human error, there may be some noise in the dataset (i.e., flipped bits).

From a dataset, causal relationships between (groups of) variables can be
discovered to form an FT. For this, one can use the standard Mantel-Haenszel
Partial Association test (PAMH) [5], a test used for the analysis of data that
is stratified. When stratifying the dataset, the effect of other variables on the
outcome variable T is eliminated, and hence the difference reflects the causal
effect of one variable (say, E) on the outcome T . By this test, a causal rela-
tionship between two given variables is statistically significant if and only if the
PAMH-score ≥ χ̃2

α,1, where χ̃2
α,1 is the standard critical value of the chi-square
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Table 1: Example dataset
A B C D E F G T count

0 0 0 0 0 0 0 0 30
1 0 1 1 0 1 0 0 20
0 1 0 1 1 0 0 0 20
0 1 0 1 1 1 0 0 20
1 0 0 1 0 0 0 0 15
0 0 1 0 0 1 0 0 15
0 0 0 0 1 0 0 0 15
0 0 1 0 1 1 0 0 15
1 1 1 1 1 0 1 0 20
0 1 1 1 1 1 1 1 10
1 0 1 1 1 1 1 1 5

distribution with 1 degree of freedom [19]. A significance level of α = 0.05 or
α = 0.01 is often used in practice.

A stratum is formally defined in Definition 8 (and is a classic concept, as
per [19]). A concrete example is given later in this section, in Example 1.

Definition 8. Given a dataset D over the set of variables V, a stratum SE,T
(where E and T are variables from V) is a contingency table which shows the
distribution of the values of variables E and T in the dataset, as counts, in the
following format:

T=1 T=0 Total

E = 1 n11 n12 n1.
E = 0 n21 n22 n2.
Total n.1 n.2 n..

where n denotes the number of records that
satisfy a given valuation of E and T .

The PAMH-score can be calculated over multiple strata (as done in CDTs [4]
and first formalised in [19]); here we have a single stratum, as follows:

PAMH(E, T ) =

(∣∣∣∣n11n22 − n21n12n..

∣∣∣∣− 1

2

)2/
n1.n2.n.1n.2
n2..(n.. − 1)

Using these concepts of strata and the PAMH-score, the LIFT algorithm1,
shown in Alg. 1, synthesises an FT from a dataset D. A variable in D corresponds
to an intermediate event. All intermediate events to be included in the FT must
be present in the dataset, but not all of those events in the dataset may be
needed in the FT. We do not know what the basic events will be, nor which
gates form the FT, nor which intermediate events are attached to the gates.

1 Code can be found at https://github.com/M-Nauta/LIFT
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Algorithm 1: LIFT: Learning a Fault Tree from a dataset

Input: D, a data set containing r records over V;
T , the intended top event with T ∈ V;
α, the significance level for the Mantel-Haenszel test

Result: Fault Tree F

1 Function CheckANDGate(E, I):
2 result = False, pamh = 0.0
3 v = [v1, ..., vr] in which vj is 1 if every i ∈ I in record j of D is 1
4 if n12 of Sv,E < αn.. && n21 of Sv,E < αn.. then
5 pamh = PAMH(v, T )
6 if pamh ≥ χ̃2

α,1 then
7 result = True

8 return result, pamh

9 Function CheckORGate(E, I):
10 Similar to lines 2-8

11 Function CreateLevel(F, Leaves):
12 for l ∈ Leaves do
13 k = 2, gate = False
14 while not gate and k ≤ |V \ IE(F)| do
15 for a in generator of combinations of size k from V \ IE(F) do
16 compute isGate, pamh = CheckANDGate(l, a)
17 compute isGate, pamh = CheckORGate(l, a)

18 if at least one a exists where isGate was True then
19 select that a and gate type t where pamh was maximum
20 add gate 〈t,a, l〉 to F
21 gate = True

22 else
23 k++

24 if not gate then
25 p = ratio of records in D where l = 1
26 create basic event B as input for l in F, and annotate B with p

27 return F

28 let F = Fault Tree 〈∅, {T}, T, ∅〉
29 while at least one new event is added to F do
30 let Leaves = set of all intermediate events at the lowest level of F
31 F = CreateLevel(F, Leaves)

Checking a proposed gate. To create a fault tree F, the LIFT algorithm itera-
tively adds a level to F, starting with just the top event (line 28-31 in Alg. 1).
Each time CreateLevel is called, the depth of the FT increases with one level.
For each intermediate event E at the lowest level of F, sets (of size ≥ 2) con-
taining intermediate events not yet in F are proposed as input of a new (AND
or OR) gate whose output is E. This is done by checking the gate for correct-
ness according to the properties of Definitions 2–3. If both gates are correct, any
design choice can be made, as discussed later in Sect. 6.
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Example 1. Using the data set shown in Table 2a, a significance level α, the
outcome variable T and the set of variables I = {A,B}, one can check if gate
G of the form 〈And, I, T 〉 meets the property specified in Definition 2 and is
statistically significant using function CheckANDgate.

Table 2: Dataset for Example 1, over variables A, B and outcome variable T ;
stratum and fault tree learnt.
A B T count

0 0 0 30
1 0 0 25
0 1 0 20
0 1 1 1
1 1 1 15

(a) Dataset

A B v T count

0 0 0 0 30
1 0 0 0 25
0 1 0 0 20
0 1 0 1 1
1 1 1 1 15

(b) Dataset incl.
var. v (AND gate)

T=1 T=0 Total

v = 1 15 0 15
v = 0 1 75 76
Total 16 75 91

(c) Stratum Sv,T

T

A B

(d) FT learnt

A temporary new variable v is added to the dataset (Table 2b). v encodes an
AND relation between A and B; v occurs (is 1) only when both A and B occur.
This variable v can then be compared with top event T to measure if there is
a causal relationship between T and A AND B. The stratum Sv,T is computed
by counting the corresponding records in Table 2b, as shown in Table 2c.

The user can specify the ratio of noise allowed by LIFT per stratum. (If the
user can assume that the flipped bits are uniformly distributed in the dataset, the
expected per-stratum noise ratio is equal to the global noise ratio.) For simplicity,
we set this noise “allowance” equal to the significance level α; the algorithm is
easily modified for any other level. In the dataset shown in Table 2a, one can see
that one record may be noise. In this example, we will set α = 0.05, so we allow
5% noise in a stratum. It then follows that the proposed AND gate G of the form
〈And, {A,B}, T 〉 meets the property of Definition 2 because in stratum Sv,T we
have n12 = 0, n21 = 1, meaning one record where the values of v and T differ.
We do allow a ratio α out of n.. = 91 to differ, but 1 < 0.05 · 91 holds. However,
if we would have selected a significance level α = 0.01, since 1 < 0.01 · 91 does
not hold, the FT couldn’t include this gate.

If the proposed gate has less noise than allowed (which is in this case true for
α = 0.05), we can determine if the causal relation between T and v is significant,
by calculating the PAMH-score:

PAMH(v, T ) =

(
15 · 75− 1 · 0

91
− 1

2

)2/
15 · 76 · 16 · 75

912(91− 1)
= 76.66 .

For α = 0.05, the critical value χ̃2
α,1 = 3.84. Since the PAMH-score is higher

than χ̃2
α,1, v and T can be concluded to have a significant causal relationship.

Similarly, a proposed OR gate is checked. By creating a temporary new vari-
able v for the OR gate, one can create a stratum to calculate the noise and the
PAMH-score in a similar way. This OR gate will have too much noise and is



10

therefore not correct. So, 〈And, I, T 〉 is added to F. Table 2d shows the final FT
learnt from the original dataset in Table 2 for α = 0.05.

An FT may have a path containing two subsequent gates of the same type;
in this case, the FT solution is not unique, and one may optimise for either
minimal gate sizes, or minimal tree depth. We choose here the former, i.e., select
the smallest input sets for all gates. LIFT is easily modified for another aim.
Example 2 below clarifies this situation.

Example 2. Take the dataset in Table 1 at the beginning of this section. The
LIFT algorithm starts with an FT containing only the top event T (line 28 in
Alg. 1). For this top event, the algorithm generates all combinations (sets) of
intermediate events, in order of increasing size (line 15). For each set a containing
intermediate events, LIFT tests whether a gate 〈Or/And,a, T 〉 (either AND
or OR) meets the property in Definitions 2–3 and does not exceed the noise
allowance (line 4). If true, LIFT checks if the PAMH score is higher than the
threshold for the Mantel-Haenszel test.

For this dataset, there is no correct OR gate 〈Or,a, T 〉 . However, there are
9 sets of intermediate events that can act as input for a correct and significant
AND gate 〈And,a, T 〉: a = {F,G}, a = {E,F,G}, a = {D,F,G}, a = {C,F,G},
a = {D,E, F,G}, a = {C,E, F,G}, a = {C,D, F,G}, a = {C,D,E, F} and
a = {C,D,E, F,G}. In other words, there are multiple structural solutions for
the FT, when the FT has a path with two subsequent gates of the same type.
In such cases, LIFT learns the solution with minimum-sized gates. The input
sets are generated in increasing size, and LIFT will stop proposing input sets
when the minimum correct input set is found. In this example, the smallest set
has size two, namely {F,G}. Therefore, gate 〈And, {F,G}, T 〉 is added to F (as
shown in Fig. 3). In case of multiple correct sets of the same size (which can
arise when there are more variables in the dataset than needed in the FT) the
set with the highest PAMH-score is selected (line 19 in Alg. 1). The algorithm
can be easily modified for another design decision, as argued later in Sect. 6.

T T

F G

T

F G

C D E

T

F G

C D

A B

E

T

F G

C D

A B

E

p=0.32 p=0.38

p=0.46

p=0.46

p=0.57

Fig. 3: Applying LIFT in Example 2 on the dataset shown in Table 1.

In the next iteration, for both F and G again sets of intermediate events are
tried. The search space is now 25 − 5− 1 = 26, because |V \ IE(F)| = 5. There
is no correct gate 〈Or/And,a, F 〉 for intermediate event F . Therefore, a basic
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event is added as input for F (line 26). For intermediate event G, one correct
and significant AND gate 〈And, {C,D,E}, G〉 is found and added to F. Similar
iterations are done for C, D and E followed by A and B, as shown in Fig. 3.

When the dataset contains information on system states which are always
measured in a fixed time horizon (i.e. discrete time), one can easily derive
stochastic measures such as failure probabilities using standard probability laws.
The statistical probability that an event E ∈ D occurs is simply P (E = 1) =
# records where E=1

total # records
; all basic events are annotated with these probabilities.

5 Evaluation

The algorithm is evaluated following the approach shown in Fig. 4. A number of
fault trees Fgt are generated as ground truth; from each of these FTs, a dataset
is synthesised randomly, including adding noise and superfluous variables (both
of these processes of synthesis are described below). LIFT takes this dataset and
a given significance value α as input, and learns another FT F, which can then
be compared to the ground truth. We say that a learnt FT is “correct” if it is
structurally equivalent to the ground-truth FT, i.e., syntactically (and not only
semantically) equivalent, where only the order of the inputs to any gate may
differ. We require that the learnt FT recovers the exact gates as in the ground
truth, since these gates may model concrete system components, for which the
correct causes of failure should be learnt. Our evaluation is thus stronger than
an isomorphism check for the FTs.

Furthermore, we assess how noise and superfluous variables in the dataset
influence the ratio of correctly learnt FTs.

LIFTDataset DGround Truth Fgt Learnt F
Data Synthesis

Evaluation

Fig. 4: Evaluation approach: Randomly generate a dataset from an FT, apply
LIFT to that dataset and compare the learnt FT with the ground truth.

Generating all FTs of a certain size As ground truth, we generate all possible
FTs over a fixed number (here, 8) of intermediate events, with no probabilities
annotated on basic events. We only generate trees and leave DAGs (with shared
variables) as future work. To mimic a manually constructed FT where readability
is important, we set a minimum of 2 intermediate events and a maximum of 5
intermediate events as input to a gate, and thus obtain 76 different FTs.

Generating a synthetic dataset from an FT Based on a generated FT, we mimic
a real-life situation by randomly synthesising 1000-record datasets where basic
events happen with a certain probability (and are not rare events). The gen-
eration process starts with valuating all basic events to either 0 or 1, with a
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randomly chosen probability between 20% and 50% that each basic event is 1.
These values are propagated through the gates in the FT up to the top event;
dependent on the type of each gate, the gate’s output event is assigned 0 or 1.
Each iteration of this procedure results in one data record.

To assure that gates are correctly recognised and that every gate is at least
once true, every combination of inputs for a gate occurs in at least c% of the
rows in the dataset (i.e. in the case of 1000 rows and c=2, every combination
occurs at least 20 times). We created datasets for both c = 0.5% and c = 2%. We
leave the task of discriminating between rare events and noise for future work.

Adding noise to the dataset In a real-life situation, having perfectly clean data
is rare because of wrong measurements, sensor glitches or manual errors for
example. To mimic noise, a number up to 5% of the rows in the dataset are
added, each with 1-2 wrong (flipped) values.

Adding superfluous variables to the dataset Our algorithm should also create a
correct fault tree when there are variables in the dataset which have no causal
effect and should not be included in the learnt FT. We thus experiment with
adding up to 4 non-causal system variables. The case of a causal superfluous
variable is discussed in Sect. 6.

5.1 Results

An analysis is done on the influence of noise or superfluous variables in the
dataset on the number of correct fault trees obtained by LIFT.
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Fig. 5: Percentage of correctly learnt
fault trees relative to the percentage
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76 different FTs with 8 intermediate
events are generated. The dataset for
each FT contains no non-causal vari-
ables, and 1000 records plus an extra
percentage of noisy records.
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76 different FTs with 8 intermediate
events are generated. The dataset for
each FT contains 1000 records, no
noisy records, but up to 4 non-causal
variables.
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As we generated all ground-truth FTs with exactly 8 intermediate events,
and 2-5 inputs for each gate (76 FTs in total), the basic datasets contain 8
columns (one for each intermediate event), and 1000 rows. Noisy rows are then
added to the dataset, depending on the level of noise desired.

Figure 5 shows the percentage of correctly learnt fault trees relative to the
percentage of rows with noise in the dataset. All learnt FTs are correct in the
absence of noise and with the significance level α = 0.001. However, this α is
by nature incapable of correctly dealing with noise, since LIFT may not find a
significant gate due to the noise. A higher α is less sensitive for noise, but does
result in a lower number of correct FTs. A learnt FT may be incorrect when
LIFT finds a significant gate with a smaller number of inputs than what should
actually be the case. Therefore, the significance level should be chosen based on
the amount of noise in the dataset. Furthermore, one can see that c naturally
influences the number of correctly learnt FTs: the less rare the events are in the
dataset, the more likely is LIFT to learn the correct FT.

Figure 6 shows the percentage of correctly learnt FTs relative to the number
of non-causal random variables present in the dataset; one can see that these
variables have little effect on the accuracy, showing that LIFT indeed finds only
causal relationships.

5.2 Complexity

Time complexity LIFT exhaustively checks all input event combinations in
order of their size, so in worst case there is one gate with all variables (except
the top event) as input. This means that for all input sets, a stratum is created
that loops over all r records and over k variables that are in that set. The
number of different combinations of size k is

(
n
k

)
where n = |V| − 1. Therefore,

the time complexity of these operations is r ·
∑n
k=2 k ·

(
n
k

)
. The PAMH-score of

each stratum is calculated and compared with the significance level, which has
a constant time complexity. This results in a time complexity of O(nr2n).

Learning boolean formulae, closely related to learning static fault trees, from
examples obtained by querying an oracle is exponential in the size of the vocab-
ulary in the general case as well as for many restrictions [16]. More precisely, a
static fault tree with only AND and OR gates can be seen as a monotone boolean
function for which the Vapnik-Chervonenkis (VC) dimension is exponential in
n [20]. So, a general exact FT learning algorithm cannot be more efficient than
the VC dimension. Reaching better complexity, which could be useful for large
datasets, is then only possible when an approximated FT is learnt, instead of
an exact solution. Such a variant of Alg. 1 may apply a greedy search-and-score
approach rather than our constraint-based approach with exhaustive search, as
inspired by structure-learning algorithms for Bayesian networks. However, those
algorithms may suffer from getting stuck in a local maximum, resulting in a lower
reconstruction accuracy. Furthermore, the highest-scoring network structure is
not necessarily the only viable hypothesis [21].
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Space complexity The input for Algorithm 1 consists of dataset D with r
records and n columns, top event T and significance level α. Therefore, the
input space complexity is Θ(rn). If the generator of combinations is on-the-fly,
its auxiliary memory complexity is O(n2).

6 Discussion

Interpretation of causality Currently, all intermediate events that should
be in the fault tree have to be included in the dataset. However, obtaining a
dataset containing all relevant variables may be impractical. One problem is the
presence of hidden variables that influence measured variables but are not in the
dataset themselves [18]. The other one is the selection bias: values of unmeasured
variables may influence whether a unit is included in the dataset [21]. This can
result in a learnt causal relationship between observed variables that does not
correspond to the real causal relations. Drawing valid causal inferences using
observational data is therefore not just a mechanistic procedure, but always
depends on assumptions and justification that require domain knowledge [22].
We are aware of the critical assessment of causal claims based on observational
data, but we think the learnt fault tree will still be valuable to give insights which
possibly were unknown beforehand and facilitates further causal inference.

Algorithm variants We made certain design decisions for the basic LIFT
algorithm in Alg. 1. Below, we present some of the many possible variants.

Multiple gate types In the case of multiple significant correct gates with the same
number of inputs, the LIFT algorithm chooses the one with the highest PAMH-
score. However, there may be cases where both an OR gate and an AND gate are
correct. For example, in case of the dataset as shown in Table 3, an OR gate will
be created when a very high significance level is chosen. However, two of these
records may be noise, so with a lower significance level an AND gate will result
in a correct gate as well. Selecting the gate type is then a matter of choice: one
can argue to choose the OR gate as this matches exactly the dataset, or choose
the AND gate since the interpretation of this gate is stricter than the OR gate.
One can also argue that the algorithm need not make a decision at all and that
it outputs multiple FTs. LIFT is easily modified for any design decision.

Table 3: Dataset where both an OR gate and an AND gate may be correct.
A B T count

0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 10,000
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Multiple significant FTs When there are causal superfluous variables in the
dataset, there may be cases of multiple correct sets of intermediate events of the
same size, that can all serve as input to a statistically significant gate. While the
basic LIFT algorithm chooses the input set with the highest PAMH-score, it is
easily modified for a different design choice, such as returning all correct FTs.

The FT as a Directed Acyclic Graph (DAG) The basic LIFT algorithm learns
trees, so the examples and evaluation presented in this paper all learn tree struc-
tures. However, in general FTs may share subtrees, meaning that an intermediate
event can be the input of multiple gates, and therefore have a directed acyclic
structure [1]. The LIFT algorithm can be modified to create DAGs by generating
broader combinations a of intermediate events, outside the while loop at line 14
of Alg. 1: instead of a generator of all combinations of size ≥ 2 from V \ IE (F),
one can instead have a generator of all combinations from V\T , with an extra
check that the created graph F remains acyclic.

More efficient exploration of variable combinations Other features of the dataset
(e.g., the graph of dependencies between variables), or even domain knowledge,
may be used to reduce the number of combinations of variables to be tried by
LIFT as inputs to gates.

7 Conclusion

In this paper, we presented an algorithm to automatically learn a statistically
significant fault tree from Boolean observational data, inspired by the construc-
tion algorithm for Causal Decision Trees. In absence of noise, all learnt FTs were
found to be structurally equivalent to the ground truth when the significance
level is 0.001. With up to 3% noise in the data, a significance level of 0.01 results
in around 65% correct FTs. As a downside, the basic LIFT algorithm does an
exhaustive search, and thus has exponential time complexity. It also cannot deal
with hidden variables.

In future work, the algorithm can be extended to learn other elements of
a fault tree, such as the XOR gate (true if and only if exactly one of its in-
put events is true). Note that elements that need sequence information (such
as the Priority-AND gate or the SPARE gate) cannot be implemented, since
the required dataset format doesn’t contain timing information. Learning fault
trees from timed observational data is also a direction for future work. For this,
learning Bayesian networks, closely related to FTs, may also be a competitive
direction to take. Moreover, one may allow continuous data instead of only bi-
nary values, similar to the C4.5 algorithm for decision trees [23] that creates a
binary expression for continuous values. This expression encodes the conditions
under which a measurement results in a failure.
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