
A Stochastic De Novo Assembly Algorithm for Viral-Sized Genomes
Obtains Correct Genomes and Builds Consensus

Doina Bucura,∗

aUniversity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

A genetic algorithm with stochastic macro mutation operators which merge, split, move, reverse and align DNA contigs on a
scaffold is shown to accurately and consistently assemble raw DNA reads from an accurately sequenced single-read library into a
contiguous genome. A candidate solution is a permutation of DNA reads, segmented into contigs. An interleaved merge operator
for contigs allows for the quick minimization of a fitness function measuring the string length of a candidate solution. This study
assembles read libraries for three genomic fragments from different organisms, five complete virus genomes, and one complete
bacterial genome, with the largest genome length of 159 kbp. To evaluate the accuracy of any assembled genome, test libraries
of DNA reads are generated from reference genomes, and the assembly is compared to the reference. The method has very high
assembly accuracy: over repeated assemblies for each input genome, the original genome was constructed optimally in over 85 %
of the runs. Given the consistency of the algorithm, the method is suitable to determine the consensus genome in de-novo assembly
problems. There are two limitations to the method: genomes with long repeats may be overcompressed, and the computational
complexity is high.

Keywords: De novo, DNA, assembly, genetic algorithm, consensus genome.

1. Introduction

Problem definition. Genome assembly for a new organism
should turn raw sequencing data into a complete genome. As
the cost of sequencing decreases, the number of projects at-
tempting de-novo assembly increases, yet problems remain: it
is not known what combinations of sequencing data and as-
sembly algorithms lead to accurate genomes, nor how to eval-
uate the accuracy of the new, resulting genome [1]. The raw
sequencing data is a library of overlapping, either single or
paired-end DNA or RNA reads (strings over the four-letter al-
phabet of bases {A,C,G,T}), from either of the two reverse-
complementary strands of a DNA molecule, or in either sense
of the same genomic strand (an example shown in Figure 1).
With the widely available second-generation sequencers, sin-
gle reads are short, uniform-length, accurate (on the order of
102 bases with 99.9% single-read accuracy for Illumina dye se-
quencing [2]), and cover the underlying genome multiple times
over, with overlap between any adjacent reads. The coverage c
is c = n · r/G, where n is the number of single reads, r the read
length, and G the length of the underlying genome.

To assemble a genome, the raw DNA reads must be linearly
ordered such that each pair of adjacent reads overlaps. Continu-
ously overlapping sequences of short reads form a DNA contig,
with the contigs ordered on a DNA scaffold which is the re-
sulting genome. This is a combinatorial problem, yielding a
computationally hard assembler [4]; the larger the genome and

∗Corresponding author
Email address: d.bucur@utwente.nl (Doina Bucur)

0 1 2 3
Offset in genome (x 1000 base pairs)

Genome X60189. 100 bp reads, coverage 10

Figure 1: Raw sequencing data of single, 100-bp reads for a human MHC
class III region DNA [3] of length 3835 bp, shown aligned against the origi-
nal genome. Reads from the forward DNA strand are shown in black, and those
from the reverse-complement are shown in red (gray in print).

the deeper its coverage, the larger the read set in input and the
harder the computation.

Existing methods are difficult to evaluate decisively. Impor-
tantly, evaluating a de-novo assembly (and the algorithm which
produced it) in practice does not often have the benefit of an
existing reference genome to compare against. Instead, the re-
sulting genomes are mostly evaluated by the number of con-
tigs in the assembly (this is the case for the prior works using
genetic algorithms), the fraction of raw reads that could be as-
sembled, the length of the contigs and scaffold, and the length
of the contigs and scaffold relative to the estimated size of the
genome [1]. Unfortunately, these so-called assembly metrics
have been recently shown in comparative studies (some using
simulated raw data with a reference genome, for a decisive eval-
uation of genome correctness) not to accurately reflect the qual-

Preprint submitted to Information Sciences June 18, 2017



ity of an assembly [5, 6, 7, 1].
Furthermore, comparative studies of assembly algorithms

found no best algorithm. In [5], the contiguity of an as-
sembled genome varied wildly among both assemblers and
genomes. When comparing the assemblies obtained to a ref-
erence genome, the following issues were found: many “chaff”
contigs (of very short length), duplicated contigs, compressions
of repeat sequences (a widespread problem for short-read as-
semblers), and contig “misjoins” (i.e., the assembler joined two
contigs which are in fact distant in the reference genome). The
second Assemblathon [6] also found a high degree of variabil-
ity among assemblies, to the extent that the result of a single
assembler and set of assembler parameters is not to be trusted.
This supports the idea of consensus: an assembly obtained by
different methods is likelier to be accurate.

Two decisive evaluation metrics: reference and consensus.
When a reference genome exists, it is the best basis to write ac-
curacy metrics (e.g., the degree to which the reference is cov-
ered by the assembly, and the percentage of contigs alignable
onto the reference). In absence of a reference, consensus is
used as an effective evaluator: a newly sequenced genome is
assumed biologically correct if a number of different assembly
algorithms, or repeated runs, have computed it. Obtaining con-
sensus is effectively the current accuracy metric in absence of
a reference genome [1]. Our algorithm is evaluated against ref-
erences, and found to be often correct and fairly consistent on
the set of genomes assembled here. Given its consistency, the
method is a good means by itself of obtaining the consensus
genome.

Summary of this contribution.

• (Algorithmic.) We improve prior genetic algorithms de-
signed for de-novo sequencing with two novel genetic op-
erators: an interleaved merge operator for contigs of any
length, and an align operator which merges “chaff” (short)
contigs at the appropriate location within long contigs.
Both operators serve to speed up the optimization of the
fitness function and effectively avoid stagnating in local
minima. An early version of the algorithm [8] identified
the potential for the align operator to refine a sub-optimal
candidate solution into the optimal solution.

• (Experimentation.) Nine genomes without long repeats
are assembled: three human and fungal genomic frag-
ments of maximum length 77 kbp, five complete virus
genomes (two phage viruses, a strain of Hepatitis C, one
of HIV-1, and one of the Zaire Ebola virus) of maximum
length 48 kbp, and one complete genome from a small bac-
terium of length 159 kbp. The original genomes serve as
references in the evaluation stage.

• (Optimality of assemblies.) The algorithm is run against
raw read libraries sampled from the reference genomes,
with single raw reads of uniform length between 100 and
700 bp, and contiguous genome coverage between 5 and
10. From each genome, 10 raw read sets are sampled (to

determine whether the algorithm is sensitive to the read
set), and for each raw data set, 20 assemblies are executed
with different random seeds. The resulting assembly is
evaluated for correctness (is it identical to the reference?),
and the fraction of correct assemblies is calculated. In
all tests, between 85 % and 100 % of the 200 assemblies
per genome gave a biologically correct assembly (in other
words, computed the optimal solution). The bottleneck to
scaling up the algorithm to larger genomes and raw read
sets is its runtime and not its ability to compute optimally.

• (Consensus among assemblies.) Given this success rate,
the algorithm on its own can serve effectively as a consen-
sus builder for de-novo assemblies, in lieu of a reference
genome.

2. Related work

Current genome assemblers implement heuristics which
compute an order for the reads, maximizing their overlap and
minimizing the number of unused reads. A number of as-
semblers exist; recent comparative studies [5, 6, 7] provide an
overview of the performance of commercial-grade assemblers
on raw sequenced data. GAGE [5] experimented with 8 as-
semblers for paired-end short reads, and evaluated the accuracy
of the results with reference genomes. The Assemblathon [6]
compared 43 assemblies and worked with both short- and long-
read, single- and paired-end libraries, without evaluating the
accuracy of the results with reference genomes. The Nanopore
benchmark in [7] used long-read MinION sequence data, and
compared 4 assemblers implementing different algorithms.

All studies found “chaff” contigs, duplicated contigs, com-
pressions of repeat sequences in the reference, and contig “mis-
joins”, to the conclusion that a single assembler and set of as-
sembler parameters cannot be trusted, supporting the need for
consensus assemblies. In [5], the assembly metrics (e.g., the
number of contigs obtained, or various basic statistics over the
sizes of the contigs) used to evaluate the assembly in absence of
a reference were found not to correlate well with accuracy met-
rics (e.g., the degree to which the reference is covered by the
assembly, and the percentage of contigs alignable onto the ref-
erence). Based on [6], it remains unclear how to assess the qual-
ity of the assembly. Assemblers benchmarked in [7] obtained
inaccurate assemblies: for one species, all assemblers had very
low reference coverage (between 0% and 12%); a greedy as-
sembler had both the genome coverage and the percentage of
alignment under 5% for both species.

2.1. Genetic algorithms

Genetic algorithms have found broad application, as var-
ied as optimizing the management of renewable energy
sources [19], data mining [20], and materials science [21]. A
number of tools have implemented a genetic algorithm for the
assembly problem. Table 1 summarizes this prior work. A first
genetic algorithm for this problem was based on that for solving
TSP [9]; a complex individual representation was used, which

2



Table 1: The design of the genetic algorithms in related work

[9] [10, 11, 12] [13, 14, 15, 16] [17, 18]
candidate
representation

sorted-order
representation

permutation permutation (a) permutation;
(b) ordered transpositions

mutation
operators

classic bit point
mutation (micro)

read swap (micro),
contig inshift (macro),
contig reverse (macro)

read swap (micro) read swap (micro)

crossover
operators

classic bit two-point
crossover (micro)

edge recombination (micro),
order crossover (micro)

order crossover (micro) partially mapped
crossover (micro)

fitness
functions

total adjacent overlap (↑)
total distant overlap (↓)

total adjacent overlap (↑)
total distant overlap (↓)

total adjacent overlap (↑)
number of contigs (↓)

total adjacent overlap (↑)

was found not to build increasingly improved solutions. How-
ever, the two fitness functions designed here were carried for-
ward by later work. They essentially compute the total overlap
between adjacent fragments on a scaffold (to be maximized),
and the total overlap among all fragment pairs at distant loca-
tions on the scaffold (to be minimized).

The follow-ups [10, 11] (with parameter tuning in [12]) pre-
serve these fitness functions, but switch to a simpler represen-
tation as a permutation: an ordered list of read identifiers. This
requires genetic operators specialized for this problem; they are
either micro operators working with raw reads, or macro oper-
ators working with contigs. These operators are listed below
and briefly compared with those used in this work (for which
Section 3 gives the full description):

Order crossover (micro). The precursor to our one-point
contig-based Order crossover O: random read indices l and
r are selected, the subsequence between l and r on the first
parent is copied into the offspring preserving absolute po-
sition, and the remaining slots in the offspring are filled
from left to right with the reads not yet in the offspring, in
the relative order in which they appear in the second par-
ent. Our work uses a macro version instead, whose advan-
tage is that, by only selecting contig indices, more existing
contigs are preserved unbroken.

Edge recombination (micro). Greedily attempts to preserve
read adjacencies from the parents into the offspring. Se-
lects the first read r from the first parent, and follows it
with that read s which (i) is adjacent to r in both parents,
or, failing that, (ii) has the most adjacencies left. This op-
erator has no equivalent in our method.

Swap (micro). Two random reads are swapped; in [12], late
swaps become greedy by overlap rather than randomly to
avoid local optima. Instead of a swap, our method has the
Inshift I operator, which is macro.

Inshift (macro): moves a random contig between a random
two previously adjacent contigs. Our method preserves
this.

Reverse-complement (macro). Reverts a random contig (with
the contig bounds being probabilistic in [12]). This macro
operator is also preserved in this work, using hard contig
bounds.

From the two fitness functions, the first is found to be adequate,
but not ideal; neither of the two functions is used in this work.

PALS [13] (with a grid-based parallelization in [14]) adds as
fitness function the number of contigs, an advantageous design
which our method carries forward. SACMA [15] is a cellular
genetic algorithm combined with a local search from PALS;
it obtained the most contiguous large assemblies among the
GAs (Table 5). In the later [22] and [16], the methods deal
with noisy raw reads (e.g., with erroneous calls for some of the
base pairs), a feature not yet present in our work. In [16], two
swarm-intelligence algorithms are presented: the Artificial Bee
Colony (ABC) algorithm and the Queen Bee Evolution Based
on Genetic Algorithm (QEGA); the largest contiguous genome
it assembled was the 48-kbp J02459 with (compared to ours)
a smaller read library of longer, 700-bp reads. In [22], PALS
is combined with Simulated Annealing, and does not obtain
contiguous assemblies for genomes larger than 20 kbp. They
preserve the genetic design (fitness functions, candidate repre-
sentation) from PALS. [17] and its extended version [18] also
reuse a classic candidate representation, genetic operator, and
overlap-based fitness function from prior literature, but exper-
iment with variations of a GA with restarts and recentering,
different variants of which are shown to match or outperform
prior classic metaheuristics such as PALS and QEGA and the
Lin-Kernighan heuristic.

In none of these studies is the biological accuracy of the as-
sembly evaluated; the focus remains on maximizing overlap-
based fitness functions, and minimizing the number of contigs
in the output.

Finally, an early version of our own algorithm [8] lacked
the Align operator, and experimented with three genomes (the
largest of which was the 48-kbp J02459) using 400-bp read li-
braries; it highlighted the potential for the correct genome to be
reconstructed.

Overall, our method deals successfully (i.e., computed opti-
mal, biologically correct genomes) using genomes and noise-
less raw-read libraries roughly twice the length of those assem-
bled by prior GAs. It has the distinct advantage of having ver-
ified biological correctness, rather than assuming that a con-
tiguous assembly or a high total overlap might also be optimal.
An extension of this method is presented in the recent [23]; it
preserves the advantages of the GA presented here, and adds
two features: (a) the ability to assemble variable-length reads,
and (b) the ability to assemble circular genomes. Both fea-

3



tures make a step towards this tool being useful for assembling
genomes with interspersed repeat sequences.

2.2. Other heuristics and algorithmic combinations

Comparative studies [5, 6, 7] give benchmarks of industrial-
grade assemblers, which come in three large algorithmic cat-
egories: greedy, Overlap-Layer Consensus, and based on de-
Bruijn graphs; all have the great advantage that their time com-
plexity is low, and thus can attempt to assemble much larger
read libraries than a genetic algorithm. Other assemblers im-
plement algorithms different than the categories above. [24]
studies variations of four prior greedy, genetic, cluster-based,
and pattern-matching algorithms. FGS [25] does a rather inac-
curate fuzzy genome sequencing using dynamic programming,
for shorter genomes and smaller read libraries than solved in
this study.

Besides comparing with related genetic algorithms, our al-
gorithm is also compared against [26], a PSO/DE method with
a Lin-Kernighan heuristic, shown to indeed be optimal in fit-
ness (by comparing the results to those of an exhaustive-search
method). The method scales up to a read library for the 2-Mbp-
genome Staphylococcus aureus, i.e., 18 thousand reads, with
a mean read length of 540 bp; it computed a very fragmented
scaffold with no fewer than 1315 contigs for this genome, the
largest of which contained 286 reads. A graph-based minimum
spanning tree algorithm is implemented in [27] and is tested
with genomes up to 2 Mpb, also obtaining many chaff contigs.

Three other assemblers are also compared against in this
work. SSAKE [28], SOAPdenovo [29], and Velvet [30] were
chosen based on their algorithmic category, ease of use, and for
known performance: SOAPdenovo and Velvet (based on de-
Bruijn graphs with added heuristics) were occasionally found
to be competitive in terms of assembly contiguity [5]. SSAKE
uses a greedy iteration: it iteratively searches for the longest
possible overlap between any two reads using a preconstructed
prefix tree in the search, and is highly sensitive to the exact raw
read library sequenced from the underlying genome.

3. Methodology

The method does stochastic optimization using an iterative,
population-based, evolutionary-inspired algorithm in which a
candidate solution is an ordering of the raw reads in input,
further grouped into contigs, i.e., subsequences of overlapping
reads. At each iteration (or generation) in the genetic algorithm,
a population of candidate solutions are comparatively evalu-
ated with a composite fitness function which measures the total
length of the contig strings in the candidate. The best among
the candidates in a population are used to generate the next gen-
eration, via mutations and crossover genetic operations which
work natively with contigs rather than raw reads. The genera-
tion of the candidate solutions in the first generation, the selec-
tion of candidates for comparative evaluation, and the genetic
operators are all stochastic in nature, so that repeated runs of the
algorithm with different random seeds are necessary to charac-
terize its behavior.

This assembly problem has been recast in the literature into
the shortest common superstring (SCS) problem, i.e., finding,
for n finite strings s1, s2, . . . , sn over an alphabet of size greater
than 2, a shortest superstring S such that every string si can
be obtained by deleting zero or more elements from S . The
SCS problem is known to be NP-complete [4], as is the simpler
version of SCS in which the n strings are totally ordered in a
superstring [9], which is essentially what we attempt to solve.
Our method is built on prior genetic algorithms for the SCS or
assembly problem, e.g. [10, 13, 16, 15], which will be described
in Section 2.

3.1. Representation of candidate solution

A segmented permutation first arranges the raw, uniform-
length DNA reads in the input in a total order, to model a DNA
scaffold. Then, it logically segments this scaffold into DNA
contigs, where each contig is a subarray of raw DNA reads, un-
der the condition that every adjacent pair of reads in a contig
overlaps by at least a minimum amount of overlap (typically
on the order of 10 bp). Figure 2 shows a sketch of a candidate
solution over 13 raw reads and 3 contigs.

scaffold:

contig strings:

Figure 2: A candidate solution for a problem with 13 raw reads in input, and
3 contigs on the scaffold. Reads with reverse-complement bits True are shown
in red (gray in print); reads with reverse-complement bits False are shown in
black.

A candidate solution is thus an object with the following at-
tributes:

DNA scaffold: a segmented permutation of the raw reads in in-
put, of which each segment models a contig, and adjacent
reads in a contig overlap.

Reverse-complement bits: for each raw read, a Boolean vari-
able which is True if the corresponding read is used in its
reverse-complemented form in this candidate scaffold with
respect to the input read set.

DNA contig strings: for each DNA contig on the scaffold, the
string obtained by overlapping the raw reads in the contig.

For all candidate solutions in the initial population, all con-
tigs contain a single read, and the contigs are ordered randomly
on the scaffold. The sum of the lengths of these contig strings
will thus start at value nr, where n is the number of reads in the
input set, and r is the raw read length, and will decrease in time,
as contigs merge.

3.2. Operators over candidate solutions

The genetic operators applied to a candidate solution at each
iteration of the genetic algorithm are summarized in Table 2 and
sketched visually in Figure 3.

4



3

2
r
3

r
1

r
1

r
2

r
3

complement(1)

Reverse−
C CC

1 2 3C CC
1 2

r

2’3
C

1
C

2
C

1
C

3
C

2

Split(2,6)
r

CC

Inshift(3,1)

1
C

1C
2

C
2

C
3

C
3

C

12
C

3
C

3
C

1
C

2

Merge(1)

C

r

3
C

1
C

2
C

1

Align

C
23

r

C

Figure 3: Mutation operators. Reads with reverse-complement bits True are shown in red (gray in print); reads with reverse-complement bits False are shown in
black. A string with an overline, e.g., r1, denotes the reverse-complement of the original string.

Table 2: Summary of mutation operators, crossover operators, and fitness func-
tions. Single-letter abbreviations are introduced for operators. The fitness func-
tions are marked with ↓, since they will be minimized.

mutation operators

(R) contig Reverse-complement
(S) contig Split
(I) contig Inshift
(M) contig Merge
(A) contig Align

crossover operators (O) scaffold one-point Order crossover
fitness functions length of DNA scaffold (↓)

number of DNA contigs (↓)

Reverse-complement: A randomly chosen contig string in
the representation becomes the reverse-complement of
the original, by reverse-complementing the corresponding
contig on the scaffold. With this operator, the algorithm
will be able to try to place a sequence of raw reads into
a candidate genome regardless of which of the two com-
plementary DNA strands (or senses, on some single-strand
genomes) this candidate genome forms. Each read in the
contig is complemented1 (e.g., ACTG becomes TGAC) and
both the reads and their order on the contig are reversed,
with the amounts of overlap between reads unchanged
(e.g., contig ACTG TGCC, in which the reads overlap by
two base pairs, becomes GGCA CAGT). In the example in
Figure 3, the first contig is reverse-complemented.

Split: A randomly selected contig (with at least two reads) is
split at a random point, forming two new adjacent contigs
on the scaffold. Two new DNA contig strings are com-
puted for the scaffold, and the total string length of the

1A’s complement is T, C’s complement is G, and vice versa.

scaffold will increase. This operator is one means for the
algorithm to escape local optima. In the example in Fig-
ure 3, the second contig is split after internal index 6.

Inshift: A randomly chosen contig is moved to another posi-
tion on the scaffold (in Figure 3, the third contig shifts
to follow the first contig). All contig lengths remain un-
changed. As this operator changes relative positions of
contigs on the scaffold, it makes new overlaps between ad-
jacent contigs possible.

Merge: A pair of adjacent contigs is merged into a new contig,
if and only if the two contigs overlap by at least a mini-
mum amount; the contigs may overlap by longer than the
read length, in which case the reads in the two contigs will
be interleaved in the final contig. A new contig string is
computed, and the total string length of the scaffold will
decrease; this is the main mechanism the algorithm has to
“compress” the candidate solution. In Figure 3, the first
and second contigs are merged. There are two variants of
this operator:

Random Merge: (Default) Among all possible merges
on a candidate scaffold, a random choice is made.

Greedy Merge: A random choice is made among the
50% best merge options in terms of overlap.

Align: This operator aims to reduce the amount of “chaff” on
the scaffold of a candidate solution, under the assump-
tion that much of the work required to construct a correct
genome was already completed, and a long, near-optimal
contig exists on the scaffold (alongside leftover, short con-
tigs yet to be incorporated in the genome). The operator
tries to place the first read from the shortest existing contig
c at a suitable position onto the longest existing contig C,

5



without increasing the string length of C—if successful, c
loses that read. This strong condition of non-increase is
increasingly likely to hold in the later stages of the algo-
rithm, if and only if C is indeed a large, contiguous part of
the correct genome. In the case when C is already equal to
the correct genome and c is a chaff contig, it is certain that
a raw read from c will fully overlap onto C. The thresh-
old of length for the longest contig C above which Align
is triggered is a configurable parameter.

Order crossover: A random contig index is selected for the
first parent’s scaffold. All the contigs to the left of this
point are preserved (in both position and internal structure)
in the first offspring. The remaining reads for this offspring
will come from the second parent, in the order in which
they appear on the scaffold of that parent; two of these
reads will be adjacent on the same contig only if they were
as such on the second parent—otherwise, they will form
separate contigs.

The initials of these operators, R, S, I, M, A, O are used in
the following as abbreviations. They are applied in each iter-
ation of the evolutionary process to a candidate solution in a
configurable order (e.g., RASIMO), each operator at a config-
urable rate of application.

Operators R, S, I, and M all perform a modification of a can-
didate solution which cannot be achieved by any combination
of other operators—in other words, this operator subset is min-
imum. O may be modelled by a long sequence of mutation
operators; the innate advantage of crossover is speed, i.e., it
drastically raises the rate of change in the population, which
is particularly beneficial in the early stages of the algorithm.
A may be modelled by two Split, one Inshift, and two Merge
mutations, and has a crucial role in “polishing” a near-optimal
candidate solution into an optimal one, in the late stages of the
algorithm.

3.3. Candidate fitness and limitations

The main component of the fitness function is the length of
the candidate scaffold, i.e., the sum of lengths of contig strings,
which is to be minimized.

Limitations. This choice of fitness function limits the problem
definition, as follows: to achieve optimal solutions, the under-
lying genomes must be without long DNA repeats (certainly
not longer than the length of the raw read); otherwise, libraries
of raw reads obtained from this genome may have a shortest
assembly which is even shorter than the original genome (a
common issue for all assembly techniques, only solvable de-
cisively by using long-read libraries). As an example, take
the 13 base-pair genome TACCCATTACCCA, with two repeated
base-pair sequences of length 6; raw reads of length 4, however
extensively they overlap and cover this genome, can assemble
into scaffolds of a shorter length 10, such as TACCCATTAC or
TTACCCATTA. In certain cases, even shorter, but badly placed
repeats will cause overcompression. Take the 13-bp genome
ACTCCATTATACT, where the 3-bp ends are identical sequences,

and take 4-bp reads; because of the overlap of the ends, the
shortest assembly is the 12-bp ATACTCCATTAT. A further situa-
tion where this fitness is “overly optimal” consists of genomes
with stretches of identical base pairs, such as the 5 base-pair re-
peat in CTAAAAAGT; if the raw reads available (say, CTAAA and
AAAGT) have a length of 5 base pairs (sufficient to recover the 5-
base-pair repeat), but only cover that part of the genome thinly,
assembling this “thin” read library using this fitness function
yields the overly compressed genome CTAAAGT.

The number of DNA contigs is the second component of the
fitness, also to be minimized. The two functions are summed
up.

Both fitness-function components are assembly metrics,
which is an inherent limitation of doing de-novo assembly,
where a reference genome for that exact organism may not be
available. As assembly metrics do not correlate well with ac-
curacy metrics (which do compare the assembly against a ref-
erence genome) [5], our algorithm is evaluated by running it
with raw-read libraries obtained from a known genome, so that
a post-factum evaluation of the results can employ an accuracy
metric, namely the identity between our solution and the refer-
ence.

3.4. Algorithmic complexity

The time complexity of applying each genetic operator to
a candidate solution with n raw reads and a read length of r
is O(nr) in all cases except the Greedy Merge, where an ex-
tra O(n log n) worst-case factor is needed (likely dominated by
O(nr)). The time complexity of computing the scaffold-length
fitness over a candidate with c ≤ n contigs on the scaffold, in
our candidate representation, is Θ(c): the length of the scaf-
fold is the sum of the lengths of the DNA contig strings, and
these are stored in the representation. Computing the contig-
count fitness is constant-time if the length of the data structure
modelling the segmented permutation is stored explicitly in the
implementation.

4. Experimental results

This section first describes the choice of genomes to as-
semble, and the method by which the raw read libraries are
obtained. The experimental results follow, together with fur-
ther experimental results using variants of the genetic operators
and parameters. Finally, some limitations of the algorithm are
demonstrated experimentally.

4.1. Genomes

The nine known genomes listed in Table 3 were used to
evaluate the algorithm. Three of these genomes (namely, the
human and fungus genomic fragments X60189, M15421, and
BX842596) are benchmarks carried forward from related work
on DNA assembly [16, 15, 13, 10, 9]; a fourth (the λ phage virus
J02459) was also seen in prior work, but is experimented with
here in its entirety (48502 bp), rather than by selecting the first
20 kbp of the genome (as done previously in [26, 13, 11, 10]).

6



Table 3: Genomes sequenced

Organism Code Ref. Genome size (base pairs)

Genomic fragments
Human MHC class III region DNA X60189 [3] 3835
Human apolipoprotein B-100 mRNA M15421 [31] 10089
Neurospora crassa DNA linkage group II BAC BX842596 [32] 77292

Virus genomes (complete)

Enterobacteria phage ΦX174 NC001422 [33] 5386
Hepatitis C virus NC009824 [34] 9456
Human immunodeficiency virus 1 (HIV-1) JQ316129 [35] 9104
Zaire Ebola virus KT589390 [36] 18957
Enterobacteria phage λ J02459 [37] 48502

Bacterial genomes (complete) Endosymbiont Carsonella AP009180 [38] 159662

The remaining five genomes are viral and bacterial genomes
of general interest: the ΦX174 bacteriophage NC001422 is
a virus whose DNA-based genome was the first to be se-
quenced in 1977 using the first-generation Sanger method [39].
The Hepatitis C virus strain NC009824, the HIV-1 strain
JQ316129, and the Ebola variant KT589390 are moderately
sized virus genomes of interest. The proteobacterium Can-
didatus Carsonella ruddii AP009180 has one of the smallest
genomes among sequenced bacteria; it is included in this study
due to its larger-than-virus size.

These nine genomes lack long repeated sequences and long
subsequences of identical base pairs which would trigger the
limitations of the method described in Section 3.3.

4.2. Raw read libraries

Raw reads of a uniform length are extracted from the
genomes described in Section 4.1, by randomly sampling sub-
strings of each genome so that (a) the substrings give an aver-
age coverage c (here, low to medium, between 5 and 10) for the
genome, which essentially translates into the library having a
certain number n of raw reads of length r (100, 400, or 700 bp),
and (b) the substrings form a contiguous cover for the genome,
with any two adjacent reads overlapping by at least a minimum
number of base pairs m (either 20 or 30 bp). A random half of
the raw reads obtained are reverse-complemented, to simulate
the situation in which they are sequenced from either sense or
strand of a genome.

Three raw read libraries are shown in Figures 1 (in Sec-
tion 1), and 4 (in this section), for the two genomes X60189
and J02459, three choices of coverage c ∈ {5, 7, 10}, and raw
read lengths 100 or 400 bp. The largest of these three read
libraries contains 849 400-bp reads. The largest read library as-
sembled in this study is sampled from the KT589390 genome
and contains 1896 100-bp reads.

Since it is entirely possible that the quality of assemblies
varies for two distinct raw read libraries obtained from the same
genome (particularly for low degrees of genome coverage), for
each genome, coverage c, and read length r in test, 10 read li-
braries are obtained. Examples are shown in Figures 1 and 4.
Each library is sequenced via 20 repetitions of the assembly
algorithm, using different random seeds.

0 1 2 3
Offset in genome (x 1000 base pairs)

Genome X60189. 400 bp reads, coverage 5

0 5 10 15 20 25 30 35 40 45
Offset in genome (x 1000 base pairs)

Genome J02459. 400 bp reads, coverage 7

Figure 4: Raw sequencing data of single, 400-bp reads for the X60189 genome
of length 3835 bp and the J02459 genome of length 48502, shown aligned
against the original genome. Forward reads are shown in black, and those
reverse-complemented are shown in red (gray in print).

4.3. Operator order, parameters, and software implementation

The assembly runs maintain a default configuration for the
genetic algorithm, across all test instances, unless another con-
figuration is mentioned explicitly. Table 4 lists the operator or-
der and parameter values which are our defaults.

A modest population size of 100 (with a matching terminat-
ing condition of 100 stagnating generations) proved sufficient
for this algorithm to be reasonably successful over all our test
cases.

At each generation, a selected candidate solution goes
through zero or more genetic operators in sequence. The default
sequence of operators RASIMOM was constructed as follows:
Operators R, S, and I, which modify a candidate scaffold mod-
erately and will not improve fitness, are grouped together and
executed apart from operator O, which also does not improve
fitness, but can modify a scaffold to a large degree. The re-
maining operators M and A perform merging and can improve
fitness; they are interleaved with the other operators in the se-
quence, to take advantage of the different orderings on the scaf-
fold. Merge is called twice, once after each group of operators
which do not improve fitness.

Four of the six genetic operators were assigned a 50 %
chance of being triggered. The Align operator is only triggered
and may modify the candidate solution in the late stages of the

7



Table 4: Default parameters for the GA

Value
Population size 100
Termination condition 100 stagnating generations
Selection Tournament selection, size 5
Elites 1
Operator order of application RASIMOM
R, S, I, M mutation rates 0.5
A mutation rate 1
A threshold (fraction of esti-
mated genome length)

0.75

O mutation rate 0.1
Read libraries per test case 10
Runs per read library 20
Minimum overlap (bp) 20, 30

algorithm, when the threshold of 75 % holds, i.e., there exists a
contig on the candidate scaffold whose length is at least 75 %
of some estimated length of the underlying genome. The Order
crossover is triggered a low 10 % of the time.

A Merge of two contigs is performed if the contigs overlap
by at least 20 bp (for the shortest raw reads, of length 100 bp)
or 30 bp (in all other cases).

The current software implementation of the algorithm is
based on the Python library Inspyred [40].

4.4. Results
A summary of numerical results is given in Table 5, together

with a numerical comparison with related work. To start with,
the first four columns define our test instances, i.e., 16 combi-
nations of a genome, a depth of coverage c, and a read length
r—for each such combination 10 read libraries are sampled, as
described in Section 4.2, and each library is assembled 20 times
with the basic algorithm parameters in Table 4.

Given these 200 runs per test instance, Table 5 (columns 5-7)
presents the numerical results as follows:

• The column Lowest contig count gives the number of
contigs obtained on the scaffold of the final assembled
genome; an optimal assembly requires this to be 1. For
our algorithm, this count is the best obtained among the
200 runs of a test instance.

• Furthermore, only in the cases when a single contig was
indeed obtained, the number 1 under Lowest contig count
is succeeded by either 3 (if the contig was verified to
be identical to the reference genome, i.e., the solution
was optimal), 7 (if the contig did not equal the reference
genome), or neither (for some cases from prior literature
where the authors did not perform this verification step,
and we cannot recover that result).

• The column % optimal assembly gives that fraction of the
200 runs where our algorithm obtained an optimal solution
(i.e., a single correct contig identical to the reference).

• The Core time column lists the rounded average runtime
of an assembly on a single, 3.1-GHz computing core. The

200 runs needed to cover each test instance were executed
in parallel.

The algorithm consistently reaches the optimal solution, and
does so in a vast majority of the runs. The larger the read library,
the more difficult the problem is, which is seen in the fact that
100 % of the runs for genome X60189 with 400-bp raw reads
and a low coverage of 5 were optimal, but only 88.5 % were so
for the same genome with shorter reads, medium coverage, and
thus read libraries eight times as large.

�����

�����

��� ��� ��� ��� ��� ��� ���

����������������������

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

���������������������������������������

����������������
�������������

� ���� ��� �� �� �� � ���� � �� �� �� �� �� �� ��� �� ���� ��� � ��� ���� � �� � ����� � � �� �� �� ���� � �� �� ��� ���� �� � �� ���� ��� � �� �� � �� � ��� � �� ��� � ��� �� �� � � �� � � �� �� �� � � �� �� �� ��� ��� � � ��� ��� �� � � � ��� � �� �� ���� ������ �� ��� � ���� ��� ���� �� �

��

��

��

��

��

��

����� ����� ����� ����� ����� ����� ����� �����

����������������������

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

����������������������������������������

����������������
����������

�
�

�

��

�� �� �

��

�� ����� � � �

����������

� � ��

��

��� � � ��� �� � �

��

��

����������

���� � � ��

��

����� � � ����

����������

��

� ��� �� ���� �� ��
�
��

��

�

����������

� ���� �� �� �

��

� �� ��

��

�� �

����������

� �

��

�� �

�

��

� ����� ���

�

��

�

����������

�� ��� �� �� �� ��� � ���� �

����������

� ���

��

� �� �� � �

��

� �

��

� �� �

����������

��

��

��

�� �� � �� ��� �
�

��

��

�

����������

�� �� ���� � ���� �� ��� ��

� � � � � � � � �

��
��
�
��
�

������ �������
��� �� ������ �������� ��� ���������� ����������

������ ������� �� �������� �� ���� ���� ������

Figure 5: (top) 200 assemblies for genome X60189 with 400-bp raw reads
and coverage 5, and (center) 200 assemblies for the same genome with 100-
bp raw reads and coverage 10. (bottom) contig lengths for all the non-optimal
assemblies for the same genome with 100-bp raw reads and coverage 10. In all
cases, the length of the reference genome is shown as a red line (gray in print).

Figure 5 (top and center) shows the detailed outcome of all
runs for the two test instances for the human genomic fragment
X60189. For each run, the plots show the scaffold length in base
pairs, and the number of contigs of the best solution obtained,
together with the number of iterations needed by the algorithm
to obtain that solution. The length of the reference genome is
shown as a red line (gray in print); the single-contig solutions

8



Table 5: Summary of results, runtimes (on 3.1-GHz computing cores), and comparison with prior methods. This algorithm was run with the default parameter values
listed previously in Table 4, with the exception of the last test instance for genome KT589390, where the operator sequence was MRMSIMOMA (with slightly
better outcome) rather than the default RASIMOM. When at least one run obtained a single contig, the number 1 under Lowest contig count is marked by 3 (if
the contig was identical to the reference), 7 (if the contig did not equal the reference), or neither (for some prior literature where the authors did not perform this
verification step).

Other GAs PSO SSAKE SOAPdenovo Velvet
This algorithm [10, 13,

14, 15, 16]
[26] [28] [29] [30]

Read Lowest % Lowest Lowest Lowest Lowest % Lowest
length Reads / contig optimal Core contig contig contig contig optim. contig

Code (bp) Cov. library count assembly time count count count count assmb. count
X60189 400 5 48 1 3 100.0 % 40 s 1[10, 13, 16] 1 3 3 5 – 4
NC001422 400 5 68 1 3 100.0 % 2 min – – 3 1 3 30 % 1 7

JQ316129 400 5 114 1 3 100.0 % 7 min – – 11 1 7 0 % 1 7

NC009824 400 5 119 1 3 100.0 % 6 min – – 9 1 3 60 % 1 7

M15421 400 5 127 1 3 100.0 % 6 min 1[13, 16], 6[10] 1 3 13 1 3 70 % 1 7

KT589390 400 5 237 1 3 100.0 % 40 min – – 18 1 3 40 % 1 7

X60189 100 10 384 1 3 88.5 % 28 min – – 4 1 7 0 % 4
NC001422 100 10 539 1 3 100.0 % 1 h – – 3 1 7 0 % 1 7

BX842596 700 5 553 1 3 99.5 % 10 h 1[15], 3[16] 1 3 50 2 – 4
BX842596 700 7 773 1 3 99.5 % 18 h 1[15], 2[13, 14] 1 3 14 2 – 4
J02459 400 7 849 1 3 98.5 % 10 h – – 11 1 3 40 % 1 7

JQ316129 100 10 911 1 3 99.0 % 4 h – – 11 2 – 1 7

NC009824 100 10 946 1 3 99.5 % 5 h – – 9 1 7 0 % 1 7

M15421 100 10 1009 1 3 99.0 % 6 h – – 9 1 7 0 % 1 7

AP009180 700 7 1596 1 3 89.5 % 125 h – – 31 3 – 1 7

KT589390 100 10 1896 1 3 87.5 % 40 h – – 9 1 7 0 % 1 7

with that length are all optimal assemblies. For the second test
instance, the 11.5 % of the runs which had sub-optimal result
are distributed among the read libraries, and the lengths of the
contigs obtained there are also given in Figure 5 (bottom); many
of these local minima of fitness contain both long, likely mis-
merged contigs, and chaff contigs which could not be aligned
onto long contigs.

The progression of iterations in a single run of the algorithm
for the shortest test instance (genome X60189 with 400-bp raw
reads and coverage 5) is given as an example in Figure 6. Each
generation shows the scaffold (i.e., the contig lengths) of the
best candidate solution in that generation; the first generation
consists of scaffolds in which each contig is a single raw read. It
is to note that only in the later generations the algorithm forms
long contigs, and the convergence on a minimum is fast after
that point.

For all test instances in Table 5, a large majority of the runs
have located the global minimum. Figure 7 gives more sum-
mary plots for the 200 runs of three test instances: the phage λ
genome NC001422 with short raw reads and medium coverage,
and the human genomic fragment M15421 and the HIV-1 strain
JQ316129 with medium-length raw reads and low coverage,
with all of the runs optimal, despite the difference in problem
difficulty due to the different sizes of read libraries.

4.5. Comparison with existing methods
The rightmost columns in Table 5 list the Lowest contig

count evaluation metric for:

• Various prior tools built around a genetic algorithm, and
one prior tool [26] based on particle swarm optimization,

with these results extracted from their respective publica-
tions, when they cover a test instance similar to ours.

• The short-read assembler SSAKE [28], which implements
a greedy heuristic based on the amount of overlap in order
to assemble the raw reads.

• The short-read assembler SOAPdenovo [29], which builds
a graph over k-long genomic substrings (kmers) where
edges model overlap (k is usually a relatively small inte-
ger), and searches for an Eulerian path to approximate a
Hamiltonian path. SOAPdenovo performed well on bacte-
rial genomes in a comparative study [5].

• The Velvet assembler [30], also based on graphs of short
kmers, showed good genome contiguity in [23] when used
with the long-read option, which attempts to heuristically
solve any short repeats introduced by the genome frag-
mentation into kmers.

The fungal genomic fragment BX842596 (of length 77 kbp,
with 700-bp raw reads and coverage 7, i.e., 700-800 reads in a
read library) is the largest assembly job for which a prior GA
obtained a single contig [15]. NB: the related work [13, 15,
26] assembled BX842596 with coverage 4 instead of our 5, but
Table 5 lists that result nevertheless. Also, the full phage λ
genome J02459 was also assembled in [16], but using a smaller
read library of longer, 700-bp reads, so it is not listed in the
table; this work obtained a single contig, but did not verify its
biological correctness.

The related work using genetic algorithms made little attempt
to also evaluate the correctness of the single-contig genome ob-

9



0 5000 10000 15000 20000 25000
Scaffold length (base pairs)

0

10

20

30

40

50

60

G
en

er
at

io
ns

 u
nt

il 
en

d 
of

 a
ss

em
bl

y

Genome X60189. 400 bp reads, coverage 5

Figure 6: The progression of generations in an assembly run for genome X60189 with 400-bp raw reads and coverage 5. For each generation, the plot shows the
contig lengths of the best solution of the generation; the colors assigned to contigs are random here, for ease of differentiation.

�����

�����

����� ����� ����� ����� ����� ����� �����

����������������������

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

������������������������������������������

����������������
�������������

� �� ���� � ��� � �� � �� �� ����� � � ��� �� �� ��� �� �� �� � � ��� �� ���� ���� � � ��� ��� � ��� � � ��� ��� �� ��� � �� ��� �� � �� �� ���� � � ���� �� � ����� � �� ���� � � �� �� ��� ����� ��� � � �� �� � � � �� �� �� ��� �� �� ��� ���� ��� �� � �� � ��� ���� � � ���� ��� � �� �� �� ��

�����

���� ���� ���� ���� ����

����������������������

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

���������������������������������������

����������������
�������������

�� � �� �� �� � ��� �� �� ���� �� ��� �� �� �� �� �� ��� ����� ��� � � �� �� �� � � ��� �� �� � � ��� �� �� ��� �� � ���� ���� �� ���� ��� �� ��� �� � ��� � ���� �� � �� � � ���� � �� �� �� � ����� � ��� ��� �� ��� �� � ��� ��� � �� � ���� �� ��� � � � ��� � �� ��� � � �� ��� �� ��� ��� � � �

����

���� ���� ���� ���� ���� ���� ���� ����

����������������������

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

�����������������������������������������

����������������
�������������

�� �� �� �� � � �� ��� �� ��� ��� �� � �� ��� � ����� ��� �� ��� ��� � �� ���� � ����� � �� � �� � �� ��� ��� � ��� �� � ��� �� � �� �� �� �� � ������ �� ���� ��� ��� �� ���� � ���� �� ��� ������ ��� � �� � ���� �� �� � � �� ��� �� �� � �� �� � �� ��� � � �� �� � ��� � �� � � �� ��� �� � � �

Figure 7: 200 assemblies for genomes NC001422 (with 100-bp reads and cov-
erage 10), M15421 and JQ316129 (with 400-bp reads and coverage 5).

tained, against a reference or by using consensus with differ-
ent methods; since different studies obtained, for single-contig
assemblies of the same genome, different values for the same
fitness function (measuring the total amount of overlap on the
scaffold), it is unlikely that many of the single-contig solutions
are biologically accurate. In contrast, the accuracy evaluation
is done here for all our results.

SSAKE is run, on each read library, with the arguments -w
10 -m 20, which state a minimum amount of overlap of 20 bp,
and aims for a depth of coverage of 10 for any contigs on the
scaffold. The contigs found by SSAKE (Table 5) include chaff

(i.e., single reads which the algorithm could not align onto long
contigs). In its defense, SSAKE is known to have better per-
formance with the deeper coverage 20; it obtained one contig
which was verified to align 99.92 % to the reference genome
for the ΦX174 (NC001422) viral genome. The SSAKE runs
showed, besides a clear lack of contiguity in the assemblies, a
very large variability in the contig count obtained by SSAKE
for the same genome, when assembling different raw-read li-
braries.

SOAPdenovo was run, on each read library, with -R to at-
tempt to solve repeats heuristically (which yields fewer contigs
than without this option), the kmer length -K 19 for short raw
reads (of 100 bp) or -K 29 (in the other cases), asm flags=3

and map len=20. Occasionally, the executable aborted with an
error message, and another kmer size had to be chosen between
19 and 33 for which the run would complete. The tool was run
once for each of our 10 read libraries. The results for SOAP-
denovo are given in two columns, similarly to the columns for
our algorithm. In no case the tool obtained the correct assem-
bly across all the read libraries of a genome; Table 5 notes a
success when at least one read library yielded the correct as-
sembly. SOAPdenovo often obtained single contigs on the scaf-
fold, yet more often than not these assemblies are not identical
to the reference, and are slightly shorter in length, i.e., over-
compressed: for example, for the test instance NC001422 (of
reference length 5386 bp) with 100-bp reads, SOAPdenovo ob-
tained 10 contiguous genomes of 10 different lengths: 5383,
5374, 5351, 5360, 5357, 5377, 5382, 5370, 5371, and 5381 bp.
Like for SSAKE, it is possible that SOAPdenovo is more accu-
rate over read libraries with deeper genome coverage.

Velvet was run with the kmer length 31 and options -long
-exp cov (also to attempt to solve repeats, which also in this
case improved the contiguity of the assembly). Velvet showed
considerable consistency when run over different read libraries
obtained from the same genome, in terms of contiguity: in most
test cases, the number of contigs obtained was constant across

10



libraries. However, for these test genomes, where no long
(but only very short) repeats exist, it appears overly compres-
sive: when assembling 10 different read libraries of the same
test instance NC001422 (reference length 5386 bp) with 100-
bp reads, Velvet obtained 8 contiguous genomes of 6 different
lengths: 5344, 5342, 5356, 5353, 5338, 5341 bp. In compar-
ison with SOAPdenovo, these genomes show more overcom-
pression. As a note, in a study focused solely on assembly algo-
rithms for genomes with long repeats, Velvet far outperformed
SOAPdenovo in terms of genome contiguity, which shows that
the two assemblers have different strengths.

4.6. Variation in genetic operators and numerical parameters

The results obtained by our tool in Table 5 used the default
parametrization of the GA, listed previously in Table 2, ex-
cept for the test instance in the last row (the Ebola genome
KT589390, raw read length 100 bp, which is the largest test
instance in this study). For this instance, Table 5 lists the re-
sults obtained with a different order of application of genetic
operators: MRMSIMOMA rather than the default RASIMOM
(all other parameters remained the same). MRMSIMOMA es-
sentially attempts twice as much merging as RASIMOM, and
yielded optimal assemblies in 87.5 % of the 200 runs, while the
default RASIMOM setting obtained a slightly lower 78.5 % rate
of optimality. We hypothesize that more merging of contigs in
the early stages of the algorithm reduces the size of the problem
left to solve by later stages, and brings a slight advantage. On
the other hand, the sequence MRMSIMOMA is more expensive
computationally: in our current implementation of the tool, the
sequence comes with a roughly 30 % increase in the runtime of
an assembly.

The results all used a Random Merge operator. We can’t
conclude on the effectiveness of the Greedy Merge operator:
on some test instances, it had a slightly better or slightly worse
optimality rate; in some cases, it showed a slight decrease in
runtime.

The Align operator plays a crucial role. Figure 8 (top) shows
the scaffold length and number of contigs obtained in the best
solution, each for a single raw read library pertaining to a test
instance, and each with and without the Align operator. While
the RASIMOM operator sequence computed the optimal as-
sembly in all the runs, the runs with the RSIMOM sequence
stagnated on a low-quality scaffold with many contigs. All the
scaffolds computed in RSIMOM runs are shown in Figure 8
(bottom), where it becomes apparent that the absence of Align
yields many chaff contigs—a fact noted before in [8]. How-
ever, almost all the runs constructed a single long contig which
is identical to the reference genome; it is this fact which allows
Align to trigger in the later iterations and refine the scaffold into
the optimal solution.

For genomes without long repeats, using an Align threshold
lower than the default 0.75 could be more beneficial in terms
of the percentage of optimal runs, if slightly more expensive in
runtime. With a threshold of 0.5, on the NC001422 genome
with 100-bp reads, the same rate of optimality was seen among
a sample of runs; on KT589390 with 100-bp reads and the de-

fault RASIMOM operator order, there was a marginally better
rate of optimality, as per Figure 9.

4.7. Compressed assemblies due to limitation

When using our method, the symptoms which indicate that
the underlying genome has long repeats or stretches of identi-
cal base pairs consist of the inability of the algorithm to reach
a consensus across read libraries. For example, assembling 10
read libraries sampled from another isolate of the HIV-1 virus,
JQ316128 [41] (not present in Table 5), using 400-bp reads,
yields the numerical results in Figure 10. While any one read
library is seen there to give relatively consistent single-contig
solutions across different runs of the assembler, the assembly
results vary in length across read libraries, and all are overcom-
pressed when compared to the reference genome. The cause is
one of the features of the genome which limit this algorithm,
due to our choice of fitness (Section 3.3): the genome has iden-
tical 142-bp end sequences, which the algorithm then overlaps
to minimize the scaffold length.

4.8. High runtimes, low memory use

The method has low memory complexity: any worst-case
auxiliary memory needed for representing the 100 candidate so-
lutions in a generation of the algorithm is of the same order of
growth as the input memory, i.e., the raw read library. On the
other hand, the runtime of the algorithm cannot be easily pre-
dicted, and will grow with both the size of the read library and
the length of the reads. An assembly run for the first test in-
stance in Table 5 required 40 seconds, and the last test instance
40 hours (on a 3.1 MHz computing core); the most computa-
tionally expensive test case was the AP009180 genome (sec-
ond to last in the table), at 125 core-hours. The current im-
plementation uses Python, an interpreted rather than compiled
programming language, so speedups can be expected in future
versions; as reflected in the high rate of optimal assemblies with
the algorithm, the bottleneck in performance in this version is
the runtime, rather than the accuracy of the algorithm.

5. Conclusions

This work presented a stochastic metaheuristic which ap-
proximates the solution to the problem of DNA-fragment as-
sembly, under the assumption of accurately sequenced frag-
ments and genomes without certain repeat patterns. It was
shown empirically that, for genomes that are virus-sized, the
method is accurate, with a 85 % chance of obtaining the correct
genome for the most difficult test instance, a 159662-bp com-
plete endosymbiont genome with 1596 DNA fragments per li-
brary. This compares favourably with other assemblers, which
show either less scalability with the size of the input, or a
high likelihood of computing inaccurate, overcompressed as-
semblies.

Given the high likelihood of our method to compute the opti-
mal solution, it can serve by itself as a means of computing the
consensus genome for a de-novo assembly project; in case of
genomes with repeats, assembling different libraries may make

11



��

��

��

���

���

���

���

���

����� ����� ����� ����� ����� �����

����������������������

�
�
�
��
�
��

�
��
�
�
��

��
�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

����������������
��������������������������

����������������
�����������������

� �� ����� ��� � �� � �� �� �

����������������

��

��

��

��
��

��

��
��

��

��

��

����

��

��

��

��

��

��

��

���

���

���

����

������������������������������

����������������������

�
�
�
��
�
��

�
��
�
�
��

��
�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

��������������
�������������������������

����������������
�����������������

���� ��� ��� � �� ��� � �� �

����������������

����

������

��
��

���� ��

�� ��
��

��

��

��

��

��

��
��

� � � � � � � � � � �� �� �� ��

��
��
�
��
�

������ ���������
��� �� ������ �������� ��� ��������� ������

������ ������� �� �������� �� ���� ���� ������

��������������������
� �� �� �� �� �� �� �� �� �� ���

��
��
�
��
�

������ �������
��� �� ������ �������� �� ��������� ������

������ ������� �� �������� �� ���� ���� ������

�������������������

Figure 8: (top) 20 assemblies with and 20 assemblies without the Align operator (over the same raw read library) for genome NC001422 with 100-bp raw reads and
coverage 10, and for genome J02459 with 400-bp raw reads and coverage 7. (bottom) contig lengths for all the assemblies performed without the Align operator,
for the same genomes; a long contig which is identical to the reference genome is marked with a 3. In all cases, the length of the reference genome is shown as a
red line (gray in print).

���

���

���

���

������ ������ ������ ������

�����������������������
�
�
��
�
��

�
��
�
�
��

��
�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

����������������
��������������������������

����������������
��������������������

�

��

�� �� �� �� ��

��

������ �

��������������������

�� �� �

��

�

���

�

��

��

� �� �� ��

��

�

Figure 9: Different thresholds for the Align operator bring a slight advantage.
20 assemblies of the same read library with the default 0.75 and 20 assemblies
with the lower 0.5 threshold. The length of the reference genome is shown as a
red line (gray in print).

this apparent by not obtaining consensus across the libraries.
The drawback of our method is its higher time complexity. Fu-
ture work will attempt to remove the assumption of perfect
sequencing accuracy, improve time complexity, and cater for

genomes with long repeated sequences.

References

[1] M. Baker, De novo genome assembly: what every biologist should know,
Nat Meth 9 (4) (2012) 333–337.
URL http://dx.doi.org/10.1038/nmeth.1935

[2] Illumina, Illumina sequencing technology, http://www.illumina.

com/documents/products/techspotlights/techspotlight_

sequencing.pdf (Oct. 2016).
[3] NCBI, Human MHC class III region DNA with fibronectin type-III re-

peats, https://www.ncbi.nlm.nih.gov/nuccore/X60189 (2017).
[4] K.-J. Räihä, E. Ukkonen, The shortest common supersequence problem

over binary alphabet is NP-complete, Theoretical Computer Science
16 (2) (1981) 187 – 198. doi:http://dx.doi.org/10.1016/

0304-3975(81)90075-X.
URL http://www.sciencedirect.com/science/article/pii/

030439758190075X

[5] S. L. Salzberg, A. M. Phillippy, A. Zimin, D. Puiu, T. Magoc, S. Koren,
T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, G. Marçais,
M. Pop, J. A. Yorke, GAGE: A critical evaluation of genome assemblies
and assembly algorithms, Genome Research 22 (3) (2012) 557–567.
doi:10.1101/gr.131383.111.
URL http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3290791/

[6] K. R. Bradnam, et al., Assemblathon 2: evaluating de novo methods of
genome assembly in three vertebrate species, GigaScience 2 (1) (2013)

12

http://dx.doi.org/10.1038/nmeth.1935
http://dx.doi.org/10.1038/nmeth.1935
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
https://www.ncbi.nlm.nih.gov/nuccore/X60189
http://www.sciencedirect.com/science/article/pii/030439758190075X
http://www.sciencedirect.com/science/article/pii/030439758190075X
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(81)90075-X
http://www.sciencedirect.com/science/article/pii/030439758190075X
http://www.sciencedirect.com/science/article/pii/030439758190075X
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290791/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290791/
http://dx.doi.org/10.1101/gr.131383.111
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290791/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290791/
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1186/2047-217X-2-10


�����

�����

�����

����

�����

�����

�����

���� ���� ���� ���� ���� ���� ���� ����

�
�
�
��
�
��

�
��
�
�
��

�
��

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�

��������������������������

�����������������������������������������

����������������
����������

�� �� � �� �� �� � �� �� �� � �

����������
�� ����� ��� ��� �� ���������������

�� �� �� �� � � �� � � �� � �� �

����������

� �� ��� � ���� ��� � ��� ��

����������

� � ����� ��� � �� �� �� ���

����������

��� �� ��� �� �� ���� �� ��

����������

�� �� �� �� ���� � �� �� ���

����������

�� � � �� ���� �� � �� ��� ��

����������

� � ��� � � � ����� �� ��� ��

����������

�� � ���� � ��� �� ��� � �� �

Figure 10: 200 assemblies for the JQ316128 genome, over 10 read libraries.
Due to a long prefix identical to the suffix of the genome, the assemblies are
overcompressed. The length of the reference genome is shown as a red line
(gray in print).

10. doi:10.1186/2047-217X-2-10.
URL http://dx.doi.org/10.1186/2047-217X-2-10

[7] Y. Cherukuri, S. C. Janga, Benchmarking of de novo assembly algorithms
for nanopore data reveals optimal performance of olc approaches, BMC
Genomics 17 (7) (2016) 507. doi:10.1186/s12864-016-2895-8.
URL http://dx.doi.org/10.1186/s12864-016-2895-8

[8] D. Bucur, De Novo DNA Assembly with a Genetic Algorithm Finds Ac-
curate Genomes Even with Suboptimal Fitness, Springer International
Publishing, 2017, pp. 67–82. doi:10.1007/978-3-319-55849-3_5.
URL http://dx.doi.org/10.1007/978-3-319-55849-3_5

[9] R. Parsons, S. Forrest, C. Burks, Genetic algorithms for DNA sequence
assembly, Proceedings. International Conference on Intelligent Systems
for Molecular Biology 1 (1993) 310318.
URL http://europepmc.org/abstract/MED/7584352

[10] R. J. Parsons, S. Forrest, C. Burks, Genetic algorithms, operators, and
DNA fragment assembly, Mach. Learn. 21 (1-2) (1995) 11–33. doi:

10.1007/BF00993377.
URL http://dx.doi.org/10.1007/BF00993377

[11] R. Parsons, M. E. Johnson, DNA sequence assembly and genetic algo-
rithms - new results and puzzling insights, in: Proceedings of the Third
International Conference on Intelligent Systems for Molecular Biology,
Cambridge, United Kingdom, July 16-19, 1995, 1995, pp. 277–284.

[12] R. Parsons, M. E. Johnson, A case study in experimental design applied to
genetic algorithms with applications to DNA sequence assembly, Amer-
ican Journal of Mathematical and Management Sciences 17 (3-4) (1997)
369–396. doi:10.1080/01966324.1997.10737444.

[13] E. Alba, G. Luque, A new local search algorithm for the DNA fragment
assembly problem, in: Proceedings of the 7th European Conference on
Evolutionary Computation in Combinatorial Optimization, EvoCOP’07,
Springer-Verlag, Berlin, Heidelberg, 2007, pp. 1–12.
URL http://dl.acm.org/citation.cfm?id=1761927.1761928

[14] A. Nebro, G. Luque, F. Luna, E. Alba, DNA fragment assem-
bly using a grid-based genetic algorithm, Computers and Op-
erations Research 35 (9) (2008) 2776 – 2790, part Special
Issue: Bio-inspired Methods in Combinatorial Optimization.
doi:http://dx.doi.org/10.1016/j.cor.2006.12.011.
URL http://www.sciencedirect.com/science/article/pii/

S0305054806003157

[15] B. Dorronsoro, E. Alba, G. Luque, P. Bouvry, A self-adaptive cellular
memetic algorithm for the DNA fragment assembly problem, in: 2008
IEEE Congress on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), 2008, pp. 2651–2658. doi:10.1109/CEC.
2008.4631154.

[16] J. S. Firoz, M. S. Rahman, T. K. Saha, Bee algorithms for solving DNA
fragment assembly problem with noisy and noiseless data, in: Proceed-
ings of the 14th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ’12, ACM, New York, NY, USA, 2012, pp. 201–208.
doi:10.1145/2330163.2330192.
URL http://doi.acm.org/10.1145/2330163.2330192

[17] J. Hughes, S. Houghten, G. M. Malln-Fullerton, D. Ashlock, Recentering

and restarting genetic algorithm variations for dna fragment assembly, in:
2014 IEEE Conference on Computational Intelligence in Bioinformat-
ics and Computational Biology, 2014, pp. 1–8. doi:10.1109/CIBCB.

2014.6845500.
[18] J. A. Hughes, S. Houghten, D. Ashlock, Restarting and recentering

genetic algorithm variations for {DNA} fragment assembly: The ne-
cessity of a multi-strategy approach, Biosystems 150 (2016) 35 – 45.
doi:https://doi.org/10.1016/j.biosystems.2016.08.001.
URL http://www.sciencedirect.com/science/article/pii/

S0303264716301605

[19] R. Baos, F. Manzano-Agugliaro, F. Montoya, C. Gil, A. Al-
cayde, J. Gmez, Optimization methods applied to renewable
and sustainable energy: A review, Renewable and Sustain-
able Energy Reviews 15 (4) (2011) 1753 – 1766. doi:http:

//dx.doi.org/10.1016/j.rser.2010.12.008.
URL http://www.sciencedirect.com/science/article/pii/

S1364032110004430

[20] R. H. Sheikh, M. M. Raghuwanshi, A. N. Jaiswal, Genetic algorithm
based clustering: A survey, in: 2008 First International Conference on
Emerging Trends in Engineering and Technology, 2008, pp. 314–319.
doi:10.1109/ICETET.2008.48.

[21] W. Paszkowicz, Genetic algorithms, a nature-inspired tool: Survey
of applications in materials science and related fields, Materials and
Manufacturing Processes 24 (2) (2009) 174–197. doi:10.1080/

10426910802612270.
URL http://dx.doi.org/10.1080/10426910802612270

[22] G. Minetti, G. Leguizamón, E. Alba, An improved trajectory-based hy-
brid metaheuristic applied to the noisy DNA fragment assembly problem,
Information Sciences 277 (2014) 273 – 283.
URL http://dx.doi.org/10.1016/j.ins.2014.02.020

[23] D. Bucur, Towards accurate de novo assembly for genomes with repeats,
in: 2017 IEEE Conference on Computational Intelligence in Bioinformat-
ics and Computational Biology (accepted), 2017, pp. 1–8.

[24] L. Li, S. Khuri, A comparison of DNA fragment assembly algorithms,
in: Proc. of the Intl Conf. on Mathematics and Engineering Techniques in
Medicine and Biological Sciences, CSREA Press, 2004, pp. 329–335.

[25] S. Nasser, G. L. Vert, M. Nicolescu, A. Murray, Multiple sequence align-
ment using fuzzy logic, in: 2007 IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology, 2007, pp.
304–311. doi:10.1109/CIBCB.2007.4221237.

[26] G. M. Mallén-Fullerton, G. Fernández-Anaya, DNA fragment assembly
using optimization, in: 2013 IEEE Congress on Evolutionary Computa-
tion, 2013, pp. 1570–1577. doi:10.1109/CEC.2013.6557749.

[27] G. M. Mallén-Fullerton, J. E. Quiroz-Ibarra, A. Miranda, G. Fernández-
Anaya, Modified classical graph algorithms for the DNA fragment assem-
bly problem, Algorithms 8 (2015) 754–773.

[28] R. L. Warren, G. G. Sutton, S. J. M. Jones, R. A. Holt, Assembling
millions of short DNA sequences using SSAKE, Bioinformatics 23 (4)
(2007) 500–501. doi:10.1093/bioinformatics/btl629.
URL http://bioinformatics.oxfordjournals.org/content/

23/4/500.abstract

[29] R. Luo, et al., SOAPdenovo2: an empirically improved memory-efficient
short-read de novo assembler, GigaScience 1 (1) (2012) 18. doi:10.

1186/2047-217X-1-18.
URL http://dx.doi.org/10.1186/2047-217X-1-18

[30] D. R. Zerbino, G. K. McEwen, E. H. Margulies, E. Birney, Pebble and
rock band: Heuristic resolution of repeats and scaffolding in the velvet
short-read de novo assembler, PLOS ONE 4 (12) (2009) 1–9. doi:10.

1371/journal.pone.0008407.
URL http://dx.doi.org/10.1371%2Fjournal.pone.0008407

[31] NCBI, Human apolipoprotein B-100 mRNA, complete cds, https://
www.ncbi.nlm.nih.gov/nuccore/M15421 (2017).

[32] NCBI, Neurospora crassa DNA linkage group II BAC clone B10K17,
https://www.ncbi.nlm.nih.gov/nuccore/BX842596 (2017).

[33] NCBI, Enterobacteria phage phiX174 sensu lato, complete genome,
https://www.ncbi.nlm.nih.gov/nuccore/NC_001422.1 (2017).

[34] NCBI, Hepatitis C virus genotype 3, genome, https://www.ncbi.

nlm.nih.gov/nuccore/NC_009824.1 (2017).
[35] NCBI, HIV-1 isolate 99HYH2, complete genome, https://www.ncbi.

nlm.nih.gov/nuccore/JQ316129.1 (2017).
[36] NCBI, Zaire ebolavirus isolate Ebola virus/H.sapiens-

13

http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1186/s12864-016-2895-8
http://dx.doi.org/10.1186/s12864-016-2895-8
http://dx.doi.org/10.1186/s12864-016-2895-8
http://dx.doi.org/10.1186/s12864-016-2895-8
http://dx.doi.org/10.1007/978-3-319-55849-3_5
http://dx.doi.org/10.1007/978-3-319-55849-3_5
http://dx.doi.org/10.1007/978-3-319-55849-3_5
http://dx.doi.org/10.1007/978-3-319-55849-3_5
http://europepmc.org/abstract/MED/7584352
http://europepmc.org/abstract/MED/7584352
http://europepmc.org/abstract/MED/7584352
http://dx.doi.org/10.1007/BF00993377
http://dx.doi.org/10.1007/BF00993377
http://dx.doi.org/10.1007/BF00993377
http://dx.doi.org/10.1007/BF00993377
http://dx.doi.org/10.1007/BF00993377
http://dx.doi.org/10.1080/01966324.1997.10737444
http://dl.acm.org/citation.cfm?id=1761927.1761928
http://dl.acm.org/citation.cfm?id=1761927.1761928
http://dl.acm.org/citation.cfm?id=1761927.1761928
http://www.sciencedirect.com/science/article/pii/S0305054806003157
http://www.sciencedirect.com/science/article/pii/S0305054806003157
http://dx.doi.org/http://dx.doi.org/10.1016/j.cor.2006.12.011
http://www.sciencedirect.com/science/article/pii/S0305054806003157
http://www.sciencedirect.com/science/article/pii/S0305054806003157
http://dx.doi.org/10.1109/CEC.2008.4631154
http://dx.doi.org/10.1109/CEC.2008.4631154
http://doi.acm.org/10.1145/2330163.2330192
http://doi.acm.org/10.1145/2330163.2330192
http://dx.doi.org/10.1145/2330163.2330192
http://doi.acm.org/10.1145/2330163.2330192
http://dx.doi.org/10.1109/CIBCB.2014.6845500
http://dx.doi.org/10.1109/CIBCB.2014.6845500
http://www.sciencedirect.com/science/article/pii/S0303264716301605
http://www.sciencedirect.com/science/article/pii/S0303264716301605
http://www.sciencedirect.com/science/article/pii/S0303264716301605
http://dx.doi.org/https://doi.org/10.1016/j.biosystems.2016.08.001
http://www.sciencedirect.com/science/article/pii/S0303264716301605
http://www.sciencedirect.com/science/article/pii/S0303264716301605
http://www.sciencedirect.com/science/article/pii/S1364032110004430
http://www.sciencedirect.com/science/article/pii/S1364032110004430
http://dx.doi.org/http://dx.doi.org/10.1016/j.rser.2010.12.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.rser.2010.12.008
http://www.sciencedirect.com/science/article/pii/S1364032110004430
http://www.sciencedirect.com/science/article/pii/S1364032110004430
http://dx.doi.org/10.1109/ICETET.2008.48
http://dx.doi.org/10.1080/10426910802612270
http://dx.doi.org/10.1080/10426910802612270
http://dx.doi.org/10.1080/10426910802612270
http://dx.doi.org/10.1080/10426910802612270
http://dx.doi.org/10.1080/10426910802612270
http://dx.doi.org/10.1016/j.ins.2014.02.020
http://dx.doi.org/10.1016/j.ins.2014.02.020
http://dx.doi.org/10.1016/j.ins.2014.02.020
http://dx.doi.org/10.1109/CIBCB.2007.4221237
http://dx.doi.org/10.1109/CEC.2013.6557749
http://bioinformatics.oxfordjournals.org/content/23/4/500.abstract
http://bioinformatics.oxfordjournals.org/content/23/4/500.abstract
http://dx.doi.org/10.1093/bioinformatics/btl629
http://bioinformatics.oxfordjournals.org/content/23/4/500.abstract
http://bioinformatics.oxfordjournals.org/content/23/4/500.abstract
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1371%2Fjournal.pone.0008407
http://dx.doi.org/10.1371%2Fjournal.pone.0008407
http://dx.doi.org/10.1371%2Fjournal.pone.0008407
http://dx.doi.org/10.1371/journal.pone.0008407
http://dx.doi.org/10.1371/journal.pone.0008407
http://dx.doi.org/10.1371%2Fjournal.pone.0008407
https://www.ncbi.nlm.nih.gov/nuccore/M15421
https://www.ncbi.nlm.nih.gov/nuccore/M15421
https://www.ncbi.nlm.nih.gov/nuccore/BX842596
https://www.ncbi.nlm.nih.gov/nuccore/NC_001422.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_009824.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_009824.1
https://www.ncbi.nlm.nih.gov/nuccore/JQ316129.1
https://www.ncbi.nlm.nih.gov/nuccore/JQ316129.1


wt/SLE/2014/Makona-201403164, complete genome, https:

//www.ncbi.nlm.nih.gov/nuccore/KT589390.1 (2017).
[37] NCBI, Enterobacteria phage lambda, complete genome, https://www.

ncbi.nlm.nih.gov/nuccore/J02459 (2017).
[38] NCBI, Candidatus Carsonella ruddii PV DNA, complete genome,

https://www.ncbi.nlm.nih.gov/nuccore/AP009180.1 (2017).
[39] F. Sanger, G. M. Air, B. G. Barrell, N. L. Brown, A. R. Coulson, J. C.

Fiddes, C. A. Hutchison, P. M. Slocombe, M. Smith, Nucleotide sequence
of bacteriophage PhiX174 DNA, Nature 265 (1977) 687–695. doi:10.
1038/265687a0.

[40] A. L. Garret, Inspyred: A framework for creating bio-inspired computa-
tional intelligence algorithms in Python, https://pypi.python.org/
pypi/inspyred (2017).

[41] NCBI, HIV-1 isolate HP-9:03KDE11, complete genome, https://www.
ncbi.nlm.nih.gov/nuccore/JQ316128.1 (2017).

Doina Bucur works on algorithms for com-
putationally hard problems. She received a
Ph.D. in Computer Science from University of
Aarhus, Denmark (2008). Between 2008 and
2010, she held a postdoctoral position with the
Computing Laboratory at University of Oxford,
UK, working on formal verification for net-
worked embedded systems. Between 2010 and

2012, she was a scientific researcher at INCAS3, a research institute in
The Netherlands. From 2012, she is an assistant professor in Computer
Science, first with University of Groningen, and then with University
of Twente, The Netherlands.

14

https://www.ncbi.nlm.nih.gov/nuccore/KT589390.1
https://www.ncbi.nlm.nih.gov/nuccore/KT589390.1
https://www.ncbi.nlm.nih.gov/nuccore/J02459
https://www.ncbi.nlm.nih.gov/nuccore/J02459
https://www.ncbi.nlm.nih.gov/nuccore/AP009180.1
http://dx.doi.org/10.1038/265687a0
http://dx.doi.org/10.1038/265687a0
https://pypi.python.org/pypi/inspyred
https://pypi.python.org/pypi/inspyred
https://www.ncbi.nlm.nih.gov/nuccore/JQ316128.1
https://www.ncbi.nlm.nih.gov/nuccore/JQ316128.1

	Introduction
	Related work
	Genetic algorithms
	Other heuristics and algorithmic combinations

	Methodology
	Representation of candidate solution
	Operators over candidate solutions
	Candidate fitness and limitations
	Algorithmic complexity

	Experimental results
	Genomes
	Raw read libraries
	Operator order, parameters, and software implementation
	Results
	Comparison with existing methods
	Variation in genetic operators and numerical parameters
	Compressed assemblies due to limitation
	High runtimes, low memory use

	Conclusions

