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ABSTRACT
Wireless sensor network (WSN) routing protocols, e.g., the
Collection Tree Protocol (CTP), are designed to adapt in
an ad-hoc fashion to the quality of the environment. WSNs
thus have high internal dynamics and complex global behav-
ior. Classical techniques for performance evaluation (such as
testing or verification) fail to uncover the cases of extreme
behavior which are most interesting to designers. We con-
tribute a practical framework for performance evaluation of
WSN protocols. The framework is based on multi-objective
optimization, coupled with protocol simulation and evalu-
ation of performance factors. For evaluation, we consider
the two crucial functional and non-functional performance
factors of a WSN, respectively: the ratio of data delivery
from the network (DDR), and the total energy expenditure
of the network (COST). We are able to discover network
topological configurations over which CTP has unexpect-
edly low DDR and/or high COST performance, and expose
full Pareto fronts which show what the possible performance
tradeoffs for CTP are in terms of these two performance fac-
tors. Eventually, Pareto fronts allow us to bound the state
space of the WSN, a fact which provides essential knowledge
to WSN protocol designers.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification, Routing protocols; C.4 [Per-
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formance of Systems]: [Design studies]; G.1.6 [Numerical
Analysis]: Optimization—Global optimization

General Terms
Performance, Algorithms

Keywords
Evolutionary Algorithms; Multi-objective Optimization; Wi-
reless Sensor Networks; Collection Tree Protocol; Perfor-
mance Evaluation; Ad-hoc Routing; Data Delivery Ratio;
Energy Consumption

1. INTRODUCTION
Wireless sensor networks (WNSs) are distributed, energy-

constrained – often battery powered – self-organizing sys-
tems most often employed for autonomous data collection in
challenging communication environments, as part of moni-
toring applications in nature or industry. WSNs are paradig-
matic examples of complex systems embedded in the envi-
ronment: while each node in the network is a constrained
embedded system, the global behavior of the network de-
pends upon the physical topology of the network (i.e., the
set of viable wireless communication links) and upon the
environmental conditions (e.g., the pattern of added envi-
ronmental noise which can impede wireless communication
between nodes). It is important to understand precisely
which type of topology combined with which type of en-
vironmental conditions may cause a WSN infrastructure to
fail at its task.

The performance evaluation of WSN routing protocols is
extremely difficult, since protocol designers have very lim-
ited information about the cause of any malfunction which
occurred in a remote deployment: “We frequently failed to
understand performance results and could not determine
who was to blame (i.e., the testbed characteristics, or the
routing layer?)” [17]. Some WSN protocols which performed
well in controlled environments had as low as 2% data de-
livery in the field [9, 26]. An inability to reproduce faulty
scenarios was also stated: “it is unclear why collection per-



forms well in controlled situations yet poorly in practice,
even at low data rates” [14].
This lack of understanding is not surprising. WSN test-

ing is often done on indoor WSN testbeds [4, 14], which
form well-connected networks unlikely to reproduce the type
of communication interruptions encountered later in envi-
ronmental deployments. Furthermore, “experimental results
obtained on a single testbed are very difficult to generalize”
[17]. Since worst-case scenarios are statistically rare events
in the state-space of the problem, non-exhaustive methods,
such as testbed analysis [14, 22] or random testing, are likely
to miss them.
A semi-automatic method to generate worst-case data-

throughput scenarios for a model of the IEEE 802.11 MAC
protocol was proposed in [3]. The approach is based on
a search algorithm through the state-space of an abstract
model in state-machine syntax; the modeling makes some
simplifying assumptions for some system features, which is
a disadvantage of the method. On the other hand, using for-
mal verification for analyzing full implementations of proto-
cols is computationally prohibitive, and has met with limited
success [21, 27]. At best, it succeeds in identifying unsafe be-
havior of a WSN protocol in a few concrete, small-size WSN
topologies, which makes it impossible to generalize the cause
of the behavior.
Recently, Evolutionary Algorithms (EAs) were proven to

be an effective technique for protocol analysis in WSNs, as
a means to create the network configurations required for
exploiting simulation-based techniques [1, 2, 5, 6]. In [5,
6], WSNs were analyzed against a single performance met-
ric: the lifetime of a WSN routing protocol. This metric
was used as evaluator for the “interestingness” of network
configurations, and served to generate sets of interesting ex-
amples of critical WSN topologies with unexpectedly low
lifetime. Earlier, [1] presented a seminal work on the use of
an evolutionary algorithm for generating a critical test case
for a simplified TCP/IP network. In [2], the authors do a
search of the state space of a particular WSN application
for fire detection, using a fitness function designed such that
it guides the search algorithm towards WSN situations in
which not only the system fails to detect a fire, but does so
because of a minimal number of node failures caused by the
environment.
Applying evolutionary computation to verification and test-

ing has also been explored in other domains. Preliminary ex-
periments in [25] suggest that stochastic meta-heuristics are
effective in locating the most promising parts of the search
space to test complex software modules. A flight system
software is verified in [23], where a genetic algorithm out-
performs classical random testing. In [13], the operating
system of a mobile phone prototype is tested with evolved
keyboard inputs, uncovering several power-related bugs.

This work extends the scope of EA-guided WSN perfor-
mance evaluation by considering multiple fitness values to
uncover multi-dimensional performance bounds, and using
a Multi-Objective Evolutionary Algorithm (MOEA) to solve
the associated optimization problem. Such analysis deep-
ens the practical lessons to be learned by WSN designers
compared to the single-metric cases previously found in the
literature, by providing a complex, heterogeneous set of mis-
behaving network topologies.

Our experiments focus on the Collection Tree Protocol
(CTP) [14] and its mainstream full implementation in the

TinyOS [19] embedded operating system; while analyzing
the implementation of the protocol, rather than an abstract
model of it, adds to the complexity of the problem, it has the
great advantage that the results of the analysis can imme-
diately be translated into practical knowledge. To evaluate
the performance of CTP, we consider two fitness functions,
namely (1) the ratio of data packets delivered successfully
by the network (i.e., the most important functional require-
ment of a WSN), and (2) the energy consumed from the
nodes’ batteries in the process (i.e., the most important non-
functional requirement). By obtaining WSN configurations
which maximize or minimize both metrics at the same time,
we can draw practical conclusions about the performance
tradeoffs of the network.

The remaining of this paper is organized as follows: Sec-
tion 2 summarizes WSN concepts, Section 3 presents the
design of our multi-objective search framework, and experi-
mentation is reported in Section 4. Conclusions and future
work are outlined in Section 5.

2. WSN DESIGN AND ANALYSIS
This section gives an overview of the design, complexity,

and performance factors of the WSN data collection protocol
under study.

2.1 Data collection with WSNs
In a WSN, each node is a small, wireless embedded system

with limited memory, computation power, communication
bandwidth, and available energy. The physical topology of
the wireless network typically exhibits heavy link dynamics
due to various changes in the environmental conditions. The
nodes are deployed at locations of interest and will sense,
store and forward data wirelessly to a sink node. The sink
node has a more reliable connection to data storage, and
will forward all collected data.

For successful data collection, WSNs employ ad-hoc col-
lection routing protocols, which form the basic underlying
infrastructure to many WSN applications. WSN collection
routing aims at adaptively organizing the nodes for data
collection into a multi-hop, cycle-free spanning tree rooted
in the sink node. In order to design adaptive routing, all
nodes broadcast to their immediate neighbors beacon mes-
sages containing the nodes’ local routing knowledge, thus al-
lowing these neighbors to (i) update their estimation of the
quality of communication links in the neighborhood, and (ii)
extend their routing knowledge with that of the neighbors.
On the basis of this, a protocol will then do adaptive route
selection, i.e., will choose the route to forward packets based
on the current quality of known routes to sink.

Among the distance-vector collection routing mechanisms
applied to WSNs, CTP [14] is the de facto standard: it
builds on the concept of combining the basic distance-vector,
beacon-based mechanism by adding adaptive beacon inter-
vals, designed to broadcast beacons more often in order to
quickly reconstruct the routing tree when the network is
changing. The combination of heavy link dynamics, contin-
uous link-quality estimation, adaptive beaconing, and adap-
tive route selection makes CTP a quite complex subject suit-
able for our analysis. Given that CTP is widely deployed
in battery-powered testbeds for environmental, medical or
infrastructure monitoring [7, 16, 26], it is also of practical
importance that its performance tradeoffs be known.



2.2 Quality metrics for WSN data collection
A number of performance metrics are crucial when analyz-

ing a WSN collection protocol in any environmental config-
urations. Functional performance metrics assess the overall
ability of the protocol to deliver all the data packets to the
sink node; non-functional metrics evaluate how efficiently
(in terms of, e.g., delay or energy consumption) data collec-
tion is done. Here, we select two critical quality metrics:

1. The data delivery ratio (DDR) is the main functional
performance metric. This metric is calculated as the
fraction of unique data packets sent by all nodes which
are received successfully at the sink node.

2. The total energy cost (COST) spent in (a) organiz-
ing and maintaining a routing tree using beacon mes-
sages, and (b) forwarding data packets towards the
sink. This is the basic non-functional metric, and is
evaluated here via a roughly equivalent heuristic: the
total number of network messages sent and received on
the network during the interval of experimentation.

In order to uncover novel worst cases for the performance
of CTP, we aim to find not only the single worst possible
values for DDR or COST, but also more elusive information
about the interplay between these performance factors:

• Does DDR generally correlate positively with COST,
as intuitively expected from routing protocols, where
heavier network communication is expected to lead to
better data delivery?

• For an observed value of DDR, what are the upper
and lower bounds of COST values over all possible
real-world network situations?

To answer these questions, we need to search for those ex-
treme network topologies and environmental conditions which
give a performance tradeoff between the network energy con-
sumption and the data delivery ratio. In effect, we need to
obtain the bounds of the two-dimensional state space cre-
ated by these performance metrics. As we will show in Sec-
tion 3, this problem can be intuitively formulated in terms
of multi-objective optimization, thus representing a natural,
yet unconventional, application of MOEAs.

2.3 WSN simulation: stochasticity, topology,
and noise injection

We use the open-source simulator TOSSIM [20] to eval-
uate CTP over different WSNs. TOSSIM is a discrete-
event simulator which allows the definition of a controlled
WSN environment. It guarantees high-fidelity simulations,
from the level of hardware interrupts up to application-level
events. Also, it provides a complete Python API which al-
lows full control over the simulation, as well as the collection
of the statistics needed for our performance analysis.
In Table 1, we summarize the configuration we use for

simulation. We consider dense topologies of 20 nodes boot-
ing at simulation time 0; there is randomness in the network
stack purposely designed for concurrent boots not to cause
network collisions due to synchronicity. Each topology is
simulated for 200 seconds, i.e., much longer than the time
needed for CTP to form a routing tree (which is less than 1
second [14]), and data packets to be routed to sink. In par-
ticular, each node samples an on-board sensor every second,
and after bundling 5 readings, forwards them to the sink.

A viable link between two nodes is that which assumes
any value above -110 dBm (a threshold particular to the
modelling of radio-frequency communication in TOSSIM).
We thus have two intervals of interest for the quality (i.e.,
signal gain) of any network link:

• strong link, with a signal gain between -100 and 0 dBm;

• no link, modeled with a fixed gain of -200 dBm.

WSNs are affected by a number of stochastic effects, in-
cluding noise on the radio frequencies used for communica-
tion, interference among the nodes themselves, packet colli-
sion, etc. TOSSIM provides an accurate model of the main-
stream radio stack. In addition to that, to further improve
the realism of the simulation (e.g., taking into account bursts
of interference) it is possible to add a statistical noise model
over the original links’ signal gains. This model is gener-
ated automatically from a trace measured experimentally in
real-world testbeds, with the generation algorithm based on
Closest Pattern Matching [18]. In our experiments, we used
two noise traces: one of light, and one of heavy noise (the
meyer-short trace available with TOSSIM).

Table 1: Configuration of simulation variables.
Simulation setting Value

Network size, density 20 nodes, 50%
Sink node node 0
Simulation time 200 seconds
Rate of data packets every 5 seconds

A noise model is injected into a simulation by TOSSIM
as described in Fig. 1: while a link between two given nodes
will be modelled with a fixed signal gain value, a given noise
pattern is superimposed to all the links in the network. If
the amplitude of the noise gain is higher than that of the
signal gain for any time interval, then for that interval the
data link becomes unusable. The heavy noise model that we
use has peaks of amplitude reaching -40 dBm.

data

signal gain

signal gain

data

simulation time

(no data)

on data links

  of environmental noise

outcome:

is data transmitted?

Figure 1: TOSSIM technique for simulating noise
on radio frequencies.

Due to these stochastic effects, in order to compute a sta-
tistically meaningful value for the WSN performance factors,
each evaluated WSN topology is simulated multiple times
with different random seeds. Since the standard error of
the mean of an n-dimensional sample whose variance is σ is
σ/

√
n, and applying the central limit theorem to approxi-

mate the sample mean with a normal distribution, a sample
size n = 16σ2/W 2 guarantees a 95% confidence interval of
width W . Thus, in order to guarantee confidence interval
W = σ regardless of the actual value of σ (which is not con-
stant in the search space) we always run n = 16 simulations
per each WSN evaluation.



2.4 The size of the search space
For WSNs of 20 nodes with a 50% density of strong links,

the search space of our problem is defined by the variables
listed in Table 2.

Table 2: Variables used and their definition domain.

Variables Domain of definition for each

380 links {strong links, no links}
190 strong links {0} or {-100, -80, -60, -40, -20, 0} dBm
noise model {light, heavy}

We thus estimate the size of the search space as follows:
10113 different combinations exist of choosing 190 strong
links out of the total 380 possible links in the network; this
is thus the size of the state space for networks with a single
gain value for strong links, and with light noise. In the ex-
periments where we inject heavy communication noise, we
need to multiply this number by the 6 different gain values
which may be given to any strong link (see subsection 3.1).

3. A MULTI-OBJECTIVE PERSPECTIVE
Many real-life optimization problems have more than one

aspect to be considered at the same time, i.e., more than
one objective to be minimized or maximized. A possible
solution (the scalarization approach) is to aggregate all ob-
jectives into a single function, e.g., through a weighted sum.
As an alternative (the lexicographical approach), a domain
expert might prioritize the objectives according to some or-
der of preference, so that these objectives are evaluated fol-
lowing that predefined order. In both cases, however, an
implicit bias is introduced in the problem, that might be
harmful, especially if the objectives are conflicting. More-
over, such approaches are not usually able to provide a full
set of tradeoff solutions, but rather they tend to offer a few
solutions (perhaps only a single solution), which are often
not homogeneously distributed in the objective space.
Unlike the fitness scalarization and lexicographical ap-

proaches, Multi-Objective Evolutionary Algorithms [10] are
based on the assumption that all the objectives of a problem
should be considered at the same time. In other words, in
order to capture the complexity of the search space of two
conflicting objectives, an algorithm cannot provide a single
optimal solution, but rather should generate a Pareto front,
that is, a set of non-dominated solutions such that none
of the objective functions can be further improved without
degrading some other objective value. The user is thus pre-
sented a set of optimal solutions, each one corresponding to
a different tradeoff between different, conflicting goals. Due
to their versatility, EAs have proven a valid tool for solving
many hard, real-world multi-objective problems [8].

3.1 Individual description
In our problem, an individual (depicted in Fig. 2) repre-

sents a candidate topology of the WSN, encoded as a square
matrix N × N , with N = 20 the number of nodes in the
network. Each position i, j in the matrix holds the gain of
the signal between nodes i and j, expressed in dBm units. It
is to note that, given the nature of wireless transmitters and
receivers, the matrix should not be symmetrical in the gen-
eral case. In Fig. 2, in the noiseless case, strong links have

0 dBm gain (green cells, gray in print); absent links are as-
signed -200 dBm (white cells). In the noisy case, strong links
take a gain value from a set (green scale, gray scale in print,
with darker cells being higher gains). The diagonal elements
(node self-connectivity) are not part of the model.

Since we are also interested into investigating the effect of
noise on the link performance, we further discretize the sets
of possible gain values, depending on the presence of noise in
the network. More specifically, in absence of noise, we assign
to strong links a fixed, ideal signal gain of 0 dBm: this can
be explained considering that links, in the absence of noise,
will have the same relative performance regardless of their
actual gain value. On the other hand, in the noisy case, we
discretize the set of possible signal gains as {-100, -80, -60,
-40, -20, 0} dBm: in this case, depending on the link noise
generated by the noise model (as described in subsection
2.3) at a point in time, the link performance will strictly
correlate to its gain.

...
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...
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Figure 2: Visual representation of individual encod-
ing. Noiseless case (left); noisy case (right). Shades
of green (grey in print) model signal gain values of
strong links; white models the absence of links.

From an evolutionary perspective, this kind of encoding
translates into the fact that individuals (i.e., candidate net-
work topologies) present two different alleles for each gene
in their genome, i.e., two possible (sets of) values for each
link gain value, corresponding respectively to either strong
or no links. Mutation operators (see subsection 3.3) can ei-
ther (a) switch a gene from one allele to the other or, (b)
in the case of a finite set of possible gain values (for noisy
strong links), tune the allele selecting one of those values.
Thus, an individual with a strong link at a given matrix
position is close (in the parameter search space) to an indi-
vidual without a link at the same position, regardless of the
actual gain of the link. Moreover, an individual without a
link contains in its genome the value of the strong link as
non-coding material, thus remembering it.

Additionally, a user-defined occurrence probability is as-
sociated to each allele, so that it is possible to design an
initial population where each individual is characterized by
a predetermined percentage of strong links.

3.2 Experimental framework
The framework used for the experiments is summed up

in Fig. 3: the evolutionary core creates candidate network
topologies for TOSSIM. All events of interest on each node
(i.e., the sending and receiving of beacons and data packets
at each node), are logged during the simulation, and the logs
are then processed to obtain the COST and DDR values.
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Figure 3: Conceptual scheme of the proposed evo-
lutionary approach.

For our experiments, we specialize a general-purpose MO-
EA, µGP [24]. Three interesting properties influence our
choice: first, since µGP’s individuals are represented as a
succession of macros with a tunable probability of appear-
ance, it is possible to describe an individual structure such as
the one presented in subsection 3.11; second, this EA is ca-
pable of managing complex genetic structures, with constant
values, integers and reals; and third, the µGP framework can
be easily coupled with an external evaluator, which makes
the integration with a WSN simulator straightforward.
µGP features built-in support for two or more fitness val-

ues, which can be evaluated either in lexicographical order
or with a multi-objective approach. The MOEA algorithm
makes use of a crowding distance metric similar to NSGA-II
[12] in order to push the exploration of the Pareto front: for
each individual, the closest neighbours are located on the
same front in the fitness space; such neighbours are then
used as vertices to compute the hypervolume of the result-
ing cuboid; individuals associated with larger hypervolumes
will be favored for reproduction. The underlying idea is that
individuals that are the farthest from others are positioned
on segments of the Pareto front not yet well explored. By
favoring such individuals, an even exploration of the Pareto
front is promoted.

3.3 Evolutionary process
The MOEA is executed with the parameter settings shown

in Table 3, and the genetic operators listed in Table 4,
namely two standard crossover operators (one-point and
two-point), and two mutation operators that act at the level
of a single gene. As explained in subsection 3.1, one muta-
tion operator, namely replacement mutation, switches one
or more genes from one allele to the other (so that an absent
link becomes a strong link, and vice versa). On the other
hand, alteration mutation perturbs on or more genes cor-
responding to strong links modifying their gains, i.e. select-
ing one of the other possible values in the predefined range.

1It should be noted that such a complex individual struc-
ture (characterized by predefined discrete sets for each allele,
each one with a user-defined occurrence probability) makes
difficult the application of general-purpose state-of-the-art
MOEAs, such as NSGA-II [12] or its recent variant NSGA-
III [11, 15]. Indeed, although it would be possible to imple-
ment such individual structure within NSGA-II/III, these
algorithms do not provide natively this kind of flexible en-
coding, that is crucial to this problem. On the other hand,
µGP offers off-the-shelf various encoding schemes, thus re-
quiring a much smaller coding effort on the algorithm im-
plementation, and allowing users to focus on applications
rather than algorithmic details.

The latter mutation is effective only in noisy cases, where
strong links are associated to a range of 6 possible values
(see Table 2).

In addition to that, the algorithm uses a self-adaptation
mechanism able to tune the activation of the different ge-
netic operators, and to determine the strength of a muta-
tion operator, thus effectively balancing exploration and ex-
ploitation during the evolution. The evolutionary algorithm
is configured in such a way that a µ+λ evolution strategy is
used. Selection is performed resorting to tournament selec-
tion with tournaments of size τ . Each evolutionary process
is allotted a computational budget of 1, 000 generations.

Table 3: MOEA parameters used.
Param. Description Value

µ population size 40
λ no. of operators applied at every step 5
τ size of tournament selection 2

stop no. of generations allotted 1000

Table 4: Genetic operators used.
Operators Description

alteration
mutation

Change one or more integer values to
different integer values (strong links,
noisy case)

replacement
mutation

Substitute one or more integer values
(strong links) with the constant value
modeling an absent link, or vice versa

one-point
crossover

Standard one-point crossover

two-point
crossover

Standard two-point crossover

4. EXPERIMENTAL EVALUATION
In order to obtain the bounds of the state space of CTP

with regard to the two performance factors, we laid down the
possible configurations for the MOEA: since both the DDR
and the COST objectives may be either maximized (denoted
↑) and minimized (denoted ↓) in an experiment, four exper-
imental configurations are possible. Two of these configu-
rations uncovered rich, informative Pareto fronts, while the
other two yielded legitimate, but trivial Pareto fronts of few
distinct points, due to the shape of the state space. In what
follows, we report on the informative experiments.

For each of the two informative configurations, we set up
two experiments: without and with heavy radio-frequency
noise injection. The resulting list of experiments performed
is shown in Table 5.

4.1 Parallelization and runtimes
All experiments have been performed on a 32-core Linux

machine (Intel(R) Xeon(R) CPUs, 2.00GHz, 128GB RAM),
running Ubuntu 12.04.1 LTS. In order to exploit the inher-
ent parallelism of the objective evaluation (for which every
simulation is repeated 16 times with different random seeds,
as motivated in Section 2.3), we ran pairs of experiments
in parallel, each one using 16 cores, so that each individ-
ual evaluation was parallelized. The values for COST and
DDR obtained from the 16 simulation repetitions were then
averaged and passed to the MOEA.

Furthermore, we assessed the repeatability of results by
rerunning each experiment configuration (not reported here



Table 5: Configuration of the experiments considered in this study.
Fitness functions
maximized (↑) Noise Network Model for strong links: % of No of No of Runtime

or minimized (↓) model size discrete set of gains (dBm) strong links generations evaluations

COST ↑ – DDR ↑ light 20 {0} 50% 1000 5123 ∼ 18h
COST ↓ – DDR ↓ light 20 {0} 50% 1000 5164 ∼ 18h
COST ↑ – DDR ↑ heavy 20 {-100, -80, -60, -40, -20, 0} 50% 1000 6652 ∼ 33h
COST ↓ – DDR ↓ heavy 20 {-100, -80, -60, -40, -20, 0} 50% 1000 6551 ∼ 20h

due to lack of space) and observing the statistical equiva-
lence of the Pareto fronts obtained on repeated experiments.
With regard to the runtime of the experiments, it should

be noted that the runtime of each experiment depends on (a)
the signal gain model for strong links, (b) the noise model,
(c) the number of topologies thus evaluated in an experi-
ment, and, significantly, (d) it is higher for topologies with
high final COST and DDR values, as these are the cases
in which the network will generate large numbers of logged
events. Hence, COST ↓ – DDR ↓ experiments show shorter
runtimes than COST ↑ – DDR ↑, due to the lower number of
packets generated by each simulation. On the other hand,
experiments with heavy injected noise have longer runtimes
than the corresponding noiseless ones, because of the addi-
tional overhead introduced by the noise generation. This
can be seen also at individual level, where the duration of
each single simulation ranges from approximately 18 seconds
(heavy noise, COST ↑ – DDR ↑) to 11− 12 seconds (remaining
cases). Obviously, the individual runtime scales up with the
network size: however, since in this study we focused only
on 20-nodes networks, we were not interested in studying
simulation runtime scalability.
Another important aspect that should be noted is that, in

the experiments with heavy injected noise, a higher number
of topologies was evaluated. This is due to the stochastic
activation of the genetic operators from Table 4 during each
generation: indeed, while the number of operators activated
per generation is fixed, the type of operators is variable,
so that a higher number of crossover activations will gener-
ate a higher number of individuals. Moreover, due to the
self-adaptation scheme embedded within µGP, the activa-
tion probability changes across generations. The MOEA
tends to use the crossover operators more intensively in the
noisy experiments than the corresponding noiseless experi-
ments, thus generating more individuals. This can be easily
explained since the fitness landscape is likely more rugged
in the presence of noise, and the fine-tuning caused by mu-
tations may be less effective.

4.2 Pareto fronts for collection routing
The Pareto fronts obtained, for each experimental con-

figuration (after various numbers of generations, including
the final count of 1000 generations) are reported in Fig-
ures 4 and 5. To be able to answer the question whether
a stopping condition at 1000 generations is sufficient to find
Pareto fronts, we illustrate not only the final front, but also
the first, randomly selected generation, and also the Pareto
fronts found after every 100th generation in the experiment.
The figures also show the combined Pareto fronts obtained

in the COST ↑ – DDR ↑ and COST ↓ – DDR ↓ experiments for
both light (Fig. 4) and heavy injected noise (Fig. 5), so as

to give a visual depiction of how all tradeoff topologies are
spread over the two search spaces, and thus delineate the
search spaces features. It can be seen, for example, that
noisy links have a stronger influence on the upper bounds
of COST and DDR, while the lower-bound Pareto front for
COST and DDR is more robust against noise.

4.3 Practical implications of this study
The importance of our results for WSN protocol designers

is manifold. By finding bounds to the two-dimensional per-
formance of CTP, we are able to prove that – surprisingly –
this protocol for collection routing has strongly unintuitive
performance trends, which may be summarized and used by
practitioners as follows:

1. COST and DDR will, in general, correlate negatively
for CTP.

2. The upper bound of the energy COST in WSN situa-
tions with low DDR is one order of magnitude higher
(rather than lower, as expected) than that of WSN
situations with near-perfect data delivery ratios. This
statement is true regardless of the amplitude of the
injected noise.

3. WSN situations which allow for high DDR can only
exhibit few COST values from a small interval. On
the other hand, WSN situations where DDR is low
can exhibit a staggering amount of COST variation.

These results can be an important tool for WSN prac-
titioners: by having this quantitative model of the perfor-
mance bounds for the protocol across the entire space of
possible topologies and communication conditions, practi-
tioners can:

• Predict the worst possible performance for a completely
uncontrolled WSN testbed; not only can DDR fall to
zero, but also the total energy COST of the testbed
can rise to an average of 30 radio events per node per
second, a number on the basis of which a worst-case
lifetime can be predicted for the network.

• Gain visibility into the effect of a network problem in
the field. E.g., a practitioner who sees a current global
DDR over 95% calculated at the sink can be certain
that the current energy COST of the network is under
a relatively low average of 7.5 radio events per node
per second; on the other hand, if the DDR at the sink
is close to zero, there is a possibility that the total
COST has currently risen to the upper bound of 30
radio events per node per second, which may require
corrective intervention over the testbed.
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Figure 4: Pareto fronts obtained for CTP with light noise, for the configurations COST ↑ – DDR ↑ (left), COST ↓
– DDR ↓ (center), and the combination of the two fronts (right).
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Figure 5: Pareto fronts obtained for CTP with heavy noise, for the configurations COST ↑ – DDR ↑ (left), COST ↓
– DDR ↓ (center), and the combination of the two fronts (right).

Furthermore, the experiments yielded a large number of
WSN situations which exhibit interesting performance; a de-
tailed analysis of topologies was partially done in [6] (only
for topologies of high COST), partly left as future work. In
Fig. 6, we show two such top individuals; dashed links are
links which are strong in only one direction.
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Figure 6: (Left) topology with DDR=0.99%,
COST=12000; (right) topology with DDR=0%,
COST=97000; both with light noise.

The WSN topology in Fig. 6 (left) (shown as an undi-
rected topology, i.e., disregarding, for readability, all links
which are not strong in both directions) is an extremely well-
behaved topology, with near-perfect values for both DDR
and COST under noiseless conditions. This shows that bidi-
rectional connectivity of the topology graph can be crucial
to good performance. On the other hand, the topology of
the top individual in Fig. 6 (right) is such that the topol-
ogy is still connected, yet partially through directional links.

While the protocol is still expected to function using these
directional links, even if no node is bidirectionally connected
to the sink node, the protocol delivers an unexpected DDR
value of zero, and also causes a one order of magnitude in-
crease in the COST. This energy is spent by the protocol in
an effort to, unsuccessfully, build the routing tree, even in
the presence of only light noise. The low DDR demonstrates
a vulnerability of the CTP design or configuration, compli-
cated further by the adaptive beacon intervals, which also
add an excessive amount of network traffic to the problem.

5. CONCLUSIONS
In this paper, we presented recent developments on an

evolutionary methodology to analyze routing protocols in
WSNs. The underlying idea is to use an evolutionary core to
generate individuals, i.e. candidate WSN topologies, show-
ing unexpected network performances. We analyzed the be-
havior of a target protocol, CTP, on the generated topologies
evaluating two metrics that relate with undesired protocol
behaviors: data delivery ratio, and total energy cost. With
the proposed approach, we were able to explore in feasible
time the highly multidimensional network state space, un-
covering full sets of Pareto-efficient topologies characterized
by tradeoff values of the two metrics. Essential to the suc-
cess of the approach was the use of a MOEA toolkit able to
handle the complex description of the individuals.

Future works will focus on performing additional experi-
ments with more configurations and on other protocols, in
order to further explore the capabilities of the proposed evo-
lutionary framework. From an algorithmic point of view,



we are also interested in extending the capabilities of µGP,
enriching it with more sophisticated multi-objective search
operators and archiving methods.
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