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Abstract. We introduce the harvesting of natural background radioac-
tivity for positioning. Using a standard Geiger-Miiller counter as sensor,
we fingerprint the natural levels of gamma radiation with the aim of
then roughly pinpointing the position of a client in terms of interfloor,
intrafloor, and indoor versus outdoor locations. We find that the perfor-
mance of a machine-learning algorithm in detecting position varies with
the building, and is highest for interfloor detection in the case of an old
domestic house, while it is highest for intrafloor detection if the floor
spans building segments made from different construction materials.

1 Introduction

Positioning is an important requirement for many novel applications. However,
technologies for positioning often depend on extensive infrastructures, which
limit the coverage of these technologies and create breakdowns in the user expe-
rience when a user crosses the—often invisible—infrastructure boundaries. One
approach for solving this problem is the development of positioning technologies
with pervasive coverage which minimizes the dependence on infrastructure.

Prior work on positioning has used the properties of physical phenomena
such as hearable sound, ultrasound, and types of non-ionizing radiation (e.g.
visible light and radio signals). In this work we consider the use of ionizing
radiation (specifically, products of radioactivity: alpha, beta and gamma rays)
for positioning. In our environment, the sources of such radiation include natural
radioactivity in the soil and building materials, and cosmic rays.

In practice, gamma radiation is most relevant, since alpha and beta radiation
have subcentimeter propagation range. The radiation appears naturally in the
environment, and the geometry of its sources in a built environment gives more
interesting variation patterns than the patterns of other radiation sources, such
as visible light.

Harvesting gamma radiation to infer location has several advantages: (i)
Gamma radiation is pervasive, therefore coverage is not confined to an area of
infrastructure coverage; (ii) The geometry of radiation sources is strikingly differ-
ent from that of other radiation, which makes gamma readings a desirable sensor
input in e. g. sensor fusion; (iii) There exist many devices that sense gamma ra-
diation, and the threat of terror might make them even more widespread. Doing



positioning over gamma radiation also has disadvantages: (i) Radiation has no
identifier embedded in the signal, so there exists only one signal source to use
in location estimation. This is the same drawback as when using visible light.
(ii) Compared to other signals, a longer sampling time is needed for detecting
relevant statistical properties of received radiation patterns.

We make the following contributions: (i) We show that gamma radiation is a
predictable signal for positioning (ii) We analyze which environment properties
gamma radiation depends on (iii) We present the first positioning system based
on background radioactivity named GammaSense, which positions a device using
location fingerprinting over gamma readings.

The remainder of this paper is structured as follows: In Section 2, we present
the relevant related work. Subsequently, we give a primer to gamma radiation
and discuss it as a signal source for positioning in Section 3. Then the novel
GammaSense positioning system is introduced in Section 4. Evaluation results
for GammaSense are provided in Section 5. Finally, Section 6 concludes the
paper and provides directions for future work.

2 Related Work

Our system examines the performance of doing localization on the basis of mea-
suring the levels of background radioactivity (gamma rays) indoors, and em-
ploying the technique of location fingerprinting. While—to our knowledge—mno
other work does infrastructureless localization with background radioactivity, a
wealth of existing research does explore the matter of doing localization indoors,
based on a variety of technologies and types of infrastructure, such as infrared,
ultrasonic and ultra-wideband, and their specific emitters and detectors.

The common drawback of these systems is their reliance on custom infras-
tructure, a fact which then diminishes their acceptance and easiness of deploy-
ment. GammaSense takes the very opposite approach and looks into making use
of natural signals for indoor positioning, offering a degree of location detection
completely independent of any infrastructure.

GammaSense uses the technique of location fingerprinting, which has already
been applied in related work with radio waves, light and sound signals. It is based
on the acquiring of a database of prerecorded signal measurements, denoted as
location fingerprints. Clients’ locations are then estimated by comparing them
with the database of fingerprints [1].

One of the first location fingerprinting systems was the radio-based RADAR
[2] system, which applied different deterministic mathematical models to cal-
culate the coordinates of a client’s position from WaveLan/ITEEE 802.11 signal
strengths. Similar methods were applied to GSM signals by Otsason et al. [3].
Unlike RADAR, later systems employed probabilistic models instead of deter-
ministic ones. An example of a probabilistic system which calculates a client’s
coordinates was published by Youssef et al. [4]; a similar system determining
the logical position or cell of a client was published by Haeberlen et al. [5].



A radio-based system named SkyFloor [6] focused on predicting the floor of a
client.

The principle of location fingerprinting was also applied to sound signals
by Patel et al. [7]; their system uses the electric wiring in a building to gener-
ate sound signals on several frequencies, which form distinctive sound patterns
throughout the building. A tone detector then picks up these sound signals and
uses them as location fingerprints. A positioning system based on location fin-
gerprinting over visible light intensities was also proposed by Ravi et al. [8].

3 Gamma Radiation

3.1 A Primer on Radioactivity and Ionizing Radiation

Radioactivity is the natural phenomenon in which certain—possibly artificial—
chemical elements emit radiation spontaneously, be it in the form of electro-
magnetic waves or of charged particles. The cause of this emission is radioactive
decay, i.e. the spontaneous transmutation of an unstable parent element into a
more stable daughter element; the decay rate is practically expressed with the
term ”half-life”, meaning the span of time required for half the quantity of the
radioactive element to transmute.

One form of radioactive decay is the beta decay. A neutron or a proton
transform into the other within the parent nucleus, accompanied by the emission
of an electron (or its positively charged version, a positron); this electron is called
a beta particle or beta ray. If a neutron transmutes into a proton, a negatively
charged electron e~ with high kinetic energy (a 8~ particle) is expelled from the
nucleus. The alternative transmutation with a positron emission (a 37 particle)
cannot occur without energy input, because the mass of a neutron is higher
than that of a proton. Hence, 31 rays are mostly produced artificially in particle
accelerators ([9]).

Another produce of radioactive decay are gamma rays, an electromagnetic
radiation having the highest frequency and the shortest wavelength within the
electromagnetic spectrum. Neutrons and protons occupy well-defined energy lev-
els in a nucleus, and when either particle is excited to a higher unoccupied level,
the excited nucleus decays to a lower energy state, and the difference in energy is
emitted as gamma radiation. This energy difference is much larger (in the range
of MeV) than in the case of excited electrons, whose similar state mutations
release visible, near-visible light or X-rays (with an energy of a few eV).

Beta particles typically have energies from a few KeV to a few MeV and
the mass of an electron (atomic mass 1/1836). The range of beta particles is
short: a 1.9mm sheet of aluminium stops a 1MeV beta particle ([10]). Because
they are relatively light, beta particles do not travel in straight lines but follow
a random path through material. Gamma rays are high-energy (0.1 to 3 MeV).
Their range is long and penetration power high; their typical means of losing
energy is by ejecting an electron from an atom and being scattered from the
impact with reduced energy (the Compton effect). To reduce the intensity of a



0.5MeV gamma ray to 0.37 of its initial value, one needs to lay a shield of 4cm
of aluminium, 0.59cm of lead or 28.6¢cm of tissue paper ([10]).

Beta and gamma radiation also accompany alpha decay (another omnipresent
radioactive decay in which heavy nuclei disintegrate by emitting a positively
charged nucleus of helium, %He%, with an even shorter range than beta particles,
due to their large atomic mass of 4). Many alpha sources are accompanied by
beta-emitting radiodaughters, and alpha emission is followed by gamma emission
from the remaining negatively charged nucleus.

All three forms of radiation produced by radioactive decay can ionize atoms
or molecules in their path (either due to their electric charge, or to their kinetic
energy), transforming them into ions by adding or removing changed particles.
Hence, along with other rays, they are collectively called ionizing radiation.

3.2 Natural Sources of Radioactivity

Background radiation is omnipresent, and has always existed naturally. Its sources
are cosmic rays (from outer space and the Sun) and terrestrial radioactivity nat-
urally occurring in soil, building materials and in air, water, foods and the human
body (as in Table 1, after [11]).

Table 1. Average worldwide exposure to natural air and soil radiation sources

Source of radiation Percentage
Cosmic radiation total 18.48

of which ionizing (beta and gamma) 13.74
Terrestrial radiation total 82.46

soil and building materials: 2**U, 2*2Th (alpha), “°K (beta) 22.74

air: radon *??Rn, thoron ?*°Rn (alpha) 59.24

Out of the sources of radiation in Table 1, the ionizing component of the
cosmic radiation, the radioactive elements in soil and construction materials
(238U, 232Th series and *°K, in approximately equal contributions), and the aerial
radioactive gases radon (and, in small concentrations, thoron) are all measurable
sources of beta and gamma rays (either directly or indirectly, as a side effect of
alpha decay).

The specific concentrations of radioactive elements in soil are related to the
types of rock from which the soils originate, which in turn correlate with the
concentrations in air. The gas radon (a decay product of radium, with a half-life
of 3.8 days) diffuses out of the soil. Radon and its decay products are the most
important contributors to human exposure to radiation from natural sources.

Indoor concentration of gamma rays, mainly determined by the materials
of construction, is inherently greater than outdoor exposure if earth materials
have been used; the geometry of the radiation source changes indoors from a
half-space to a surrounding configuration. The indoor to outdoor ratios range
from 0.6 to 2.3, with a worldwide ratio of 1.4 ([11]).



3.3 Indoor Variations of Radiation Concentrations

Some of the radioactive sources are fairly constant and uniform geographically,
while others vary widely with location. Naturally, cosmic rays are less intense
at lower altitudes, and concentrations of uranium and thorium are elevated in
certain soils. More interestingly, the building materials of houses and the design
and ventilation systems strongly influence indoor levels of the most important
contributors, radon and its decay products.

Advection from the soil is the main factor for high radon entry rates in
buildings (as in Table 2, after [11,12]). Radon is driven indoors by the pres-
sure differential between the building and the ground around the foundation,
produced by the higher indoor temperatures, ventilation, and to some degree
by wind blowing on the building. The effectiveness of this pressure differential
is dependent on the permeabilities of the building foundation and the adjacent
earth. Also, wind can cause decreases in radon entry concentrations by its flush-
ing effect on radon in soil surrounding the house. Because of differences in the
pressure differentials and permeabilities, advection varies greatly from structure
to structure, especially in temperate and cold climates. The non-masonry build-
ing in Table 2 has less accumulation of radon than the masonry one, due to a
smaller radiation contribution from walls and ceilings.

Table 2. Representative radon entry rates in low-level residential houses: a masonry
house and a wooden house in Finland [11]

. Rate (Bq/m>h) and percentage

Source of radon Mechanism Masonr(y h(/) s ) Woodon hoguse
Building elements

Walls and ceiling |Diffusion 16 (18) 2 (3)
Subjacent earth

Through gaps Advection 66 (73) 60 (86)

Through slab Diffusion 4 (4) 4 (6)
Outdoor air Infiltration 3 (3) 3 (4)
Water supply De-emanation 1(1) 1(1)
Total 90 (100) 70 (100)

Various surveys also find radon concentration variations between rooms in the
same building. Ghany [13] and Sonkawade et al. [14] find that the mean values
of radon concentration in bathrooms and kitchens were significantly higher than
those in living rooms and bedrooms. The find is motivated by ceramic being a
radon source, poor ventilation and the use of underground water and natural
gas.

3.4 Experimental Results

Given the representative surveys in Subsections 3.2 and 3.3 upon the variations
of radioactivity levels indoors, we expect to be able to harvest indoor radiation



levels to use in localization. T'wo facts about the variability of the radiation levels
are important when designing a localization algorithms based on fingerprinting:
one is the geometric variability of the measurements within the building, and
the other is the consistency of the signal levels at any given location. We give a
brief account of our findings in the following.

Our experiments did confirm the expected indoor geometry of the radioac-
tivity source. In one of our testbed buildings (a two-level domestic house, as
seen later in Subsection 5.1), both the mean and the variance of radioactivity
readings differ visibly between the two rooms on different floors, as in Fig. 1. The
mean over a l-hour-long continuous length of 1-minute counts shows a 10.32%
decrease from the ground-floor room (mean 30.79 counts per minute) to the first-
floor room (mean 27.61 counts per minute), and a striking difference in standard
deviations (a 26.43% decrease, from 5.75 on level zero to 4.23 on the first level).
This fact verifies that the major radiation source indoors is the subjacent earth,
with its influence being diminished and smoothed with rising levels.
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Fig. 1. The difference in radiation measurements over 1-hour periods between rooms
on different floors in a domestic house in Egaa, Denmark

To confirm the stability of the signal, we then refer to Fig. 2, which depicts the
typical variation in readings in a fixed position over a 1-day-long period of time.
In another of our testbeds (a public institution, more on which in Subsection 5.1),
subjected to a fair level of human activity during a working day, the signal
doesn’t exhibit significant variation.

4 GammaSense

The sensor we used for measuring radiation levels was a radioactivity meter
composed of two devices: a commercially available Geiger-Miiller tube and a
pulse ratemeter (i. e. counter, either battery- or AC-powered) designed to feed
the Geiger-Miiller tube with voltage and to handle the pulses delivered by the
tube. Both were manufactured by a small local company called Impo electronic,
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Fig. 2. Signal stability over a 24-hour period

for use in education. The setup and the tube’s technical specification are depicted
in Fig. 3.

A Geiger-Miiller tube is one of the several radioactivity detectors whose func-
tionality is based on the ionizing capability of the radiation produced through
radioactive decay. The tube is filled with a mixture of inert gases, in which
incoming ionizing radiation creates electrons and positively charged ions. The
tube wall constitutes the negative electrode or cathode, while a thin central
wire is highly charged with positive voltage and is an anode. The strong electric
field created by the electrodes accelerates the ion towards the cathode and the
electron towards the anode, giving them sufficient energy to ionize further gas
molecules through collisions, thus creating an avalanche of charged particles.

The result is a short, intense pulse of current which passes from the nega-
tive electrode to the positive electrode and is counted as one ionizing particle.
The counter also includes an audio amplifier that produces a beep upon pulse
detection. The number of pulses per time unit measures the intensity of the ra-
diation field. Cheap and robust, a Geiger-Miiller tube can detect the intensity
of radiation (particle frequency), but not particle energy.

We performed all measurements maintaining the anode voltage strictly at
the recommended, mid-plateau voltage of 575V (as described in Fig. 3(b)), for
best independence of counts from voltage supplied, both when powering the
device from battery and when plugged into the power supply infrastructure. The
counter allows the configuration of a small number of counting parameters, such
as different count times (between 1 and 120 seconds) after which the total number
of particles is reported, and has the ability to count and report continuously for
such subsequent fixed periods.

The results are either reported on the counter’s small screen, or sent through
the counter’s RS-232 interface to a laptop, stored in a volatile memory (which
only holds 50 counts), or stored in a non-volatile datalog (with a capacity of 250
counts). In our experiments, we used either the sending of each count in real
time to the laptop, or the downloading of the contents of the datalog—when



Sensitive to: beta, gamma rays.
Effective diameter: 27.8mm.
Window material: mica.
Window thickness: 2%,3 %]
Gas filling: neon, argon, halogen.
Plateau: [450V, 700V].
Recommended voltage: 575V.
Dead time at 575V: 19uS.

(a) Geiger-Miiller tube in holder (left) (b) The tube’s technical specifications.
and pulse ratemeter with data log and  The plateau is the voltage interval where
serial interface (right) counts/sec is least dependent of voltage.

Fig. 3. The experimental setup: Geiger-Miiller tube and counter with technical speci-
fications

full—to the laptop; in both cases, the readings were saved in the ratemeter’s
format in raw data files.

On the laptop side of the RS-232 interface, we used a Linux Debian with
minicom, a text-based, GPL-licensed terminal emulator for Unix-based operating
systems.

For implementing location fingerprinting using gamma readings we used the
machine-learning tool Weka [15]. Weka implements a range of machine-learning
algorithms and several GUIs for configuration, experimentation, and visualiza-
tion. Before selecting a machine-learning algorithm to use, we experimented with
different algorithms, and concluded that the LogitBoost algorithm was most
fit. LogitBoost is based on additive logistic regression, which means that the
algorithm—given a simpler algorithm—iteratively constructs a better detector
by combining several instances of the simple algorithm. We used a decision stump
(i.e. a simple boolean classifier) as the simple algorithm.

In order to feed our data to Weka, we implemented a small Java program that
reads the raw data files and outputs ARFF data for the Weka tool. The program
also calculates certain features from the raw gamma readings: aggregated 60-
second counts, and the mean and variance of the latest five 60-second counts.
These features are then written to the ARFF file together with ground truth
about whether the data was collected indoor or outdoor, on which floor, and at
which horizontal location.

5 Evaluation

5.1 Data Collection

We collected the location fingerprints we used in our indoor localization study
over an 8-month period ending in June 2008. For the study, we chose four testbed
buildings with diverse construction parameters (i. e. number of floors, building



materials and age of construction) located in two countries. We give a superficial
visual impression of the four testbed buildings in Fig. 4, where we also list the
identifiers by which we refer to the testbeds in the rest of the paper.

o

(a) an old village house in Egaa, Den- (b) the Computing Laboratory at the
mark (Egaa) University of Oxford, UK (ComLab)

— & e SRR
(c) the Mathematics Department at the (d) the Computer Science Department
University of Aarhus, Denmark (Math) at the University of Aarhus, Denmark
(CS)

Fig. 4. The testbed buildings, ordered by age of construction; the building identifier is
listed in parentheses

Their construction parameters are then recorded in Table 3, in terms of
the year the building was finished, the type of construction materials and the
number of building levels. For building Egaa, 1829 is the building year, while
1960 is the year when three of the perimeter walls have been renewed. Testbed
ComlLab is an extensive building composed of a number of smaller constructions,
linked together: four old Victorian houses built before 1901 formed the southern
wing, to which a identically-styled northern wing was added by 1993, for then a
fully-modern segment to be attached by 2006.

Using the setup in Fig. 3 detailed in Section 4, we collected fingerprints of the
background radioactivity at fixed height for any particular building. For Egaa, we
took sample counts in each of the four rooms for one hour, while for CS and Math
we fixed one and three locations, respectively, on each floor, and took sample
counts for 10 to 20 minutes. In ComLab, due to the complexity of the building, we
divided the study cases in two: a vertical study aiming at distinguishing among
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Table 3. The testbeds’ characteristics

Building  Built by Building materials Floors Use

Egaa 1829, 1960 Stone, brick, wood, straw 2 domestic
ComLab 1901, 1993, 2006  Brick, concrete 5 institution
Math 1967 Brick, concrete, stone, wood 5 institution
CS 2001 Concrete, steel, glass 4 institution

floors collected 20-minutes worth of samples from the same vertical location on
each level, while for the horizontal study we took measurements on the fourth
floor at six locations divided equally among the three wings of the building.

For an additional indoor-versus-outdoor study, in the case of ComLab we
also collected samples from two outdoor locations in the very vicinity of the
testbed building. Also, to verify the stability of the signal, we collected long-
term counts: one over 5 days in a fixed location in a CS office, and one over 2
days in a ComLab office.

All sample measurements were collected as continuous counts, 10-second (in
the majority of experiments), 1-minute or 2-minute-long; the continuous taking
of short counts allowed us to aggregate these short counts into longer counts, as
needed for the study.

5.2 Accuracy

The accuracy of GammaSense was evaluated by emulation on the collected data
set. The technique of emulation tests the machine-learning algorithms in an
environment emulated by the data set, for the ability to distinguish among indoor
horizontal locations, indoor vertical locations and indoor versus outdoor. The
emulations were run in the Weka tool (as described in Section 4) using fivefold
cross-validation for splitting up the data sets into training and test data for the
machine-learning algorithms. The features used in the emulations were 60-second
gamma counts, and the mean and variance of the last five 60-second counts.

The performance of the localization algorithm is judged in the rest of this
section based on quantitative measures, i.e. the detection accuracy, the confusion
matriz and the kappa statistic. The detection accuracy is the percentage of cor-
rectly classified tests. A confusion matrix shows how many instances have been
assigned to each class; the matrix elements show the percentage of test examples
whose actual class (i.e. the actual location) is the row and whose predicted class
(i.e. the predicted location) is the column.

The kappa statistic quantifies how much a detector is an improvement over a
random detector. It can be thought of as the chance-corrected prediction agree-
ment, and possible values range from +1 (perfect agreement between prediction
and reality) via 0 (no agreement above that expected by chance) to -1 (complete
disagreement).

Horizontal The aim for the indoor horizontal localization was to distinguish
among different building segments based on their different gamma patterns.
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The ComLab building consists of three wings built by 1901, 1993 and 2006,
respectively, with the oldest two wings highly similar in style and material. We
grouped our ComLab data into three classes, one for each building part. The
emulation for this three-class recognition problem gave a detection accuracy of
67.7% and a kappa statistic of 0.51.

Further analysis of the prediction errors revealed that they were not dis-
tributed evenly between the three classes, as shown by the confusion matrix in
Table 4(b). The highest confusion rates were between the 1901 and 1993 wings,
a fact we explain by a high similarity in building materials and style, despite the
different ages. Furthermore, if the data is regrouped into a two-class problem for
distinguishing between the 1901/1993 and 2006 wings, the accuracy increases
to 81.7% and the kappa statistic to 0.60, as summarized in Table 4(a). Hence,
localization accuracy depends on similarity of construction. We conclude that
GammaSense distinguishes between building segments of different construction
parameters with moderate performance.

Table 4. ComLab horizontal results.

(a) Detection results for localization (b) Confusion matrix for the 3-wing
among the three wings (first row). The  study. Elements show the percentage of
same if the oldest two wings are aggre- tests whose row is the actual wing and
gated into a single wing (second row). whose column is the predicted wing.
|Accuracy Kappa |1901 1993 2006
ComLab (3 wings) (67.7% 0.51 1901 [15.6%  9.7% 1.1%
ComLab (2 wings) |81.7% 0.60 1993 8.1%  231% 7.5%

2006 |1.1% 4.8% 29.0%

Vertical For the indoor vertical localization, the target was floor detection. The
Egaa, ComLab, Math, and CS data sets were used in this evaluation, and the
emulation for these buildings gave the results in Table 5(a). Overall, the Egaa
domestic house allowed us a high degree of floor prediction agreement, while this
decreased for the three public institutions.

From the confusion matrix for the vertical ComLab study (Table 5(b)) one
identifies that one particular reason for the poor accuracy is the fact that the
fourth and basement floors are comparable in gamma counts. While high counts
were expected for the basement floor, one explanation for the high counts of the
top floor is the fact that either the roof of the building is highly radioactive, or
that the poor building ventilation has the radioactive gases accumulate under
the roof. The Math building does not suffer from this issue and exhibits higher
accuracy and kappa statistic. CS gave the poorest results for the kappa statistic,
possibly because the CS building is new, the shielding between floors and from
the subjacent earth is intact, and there exists an active ventilation system.
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We then conclude that GammaSense distinguishes among floors in a building,
yet there exists a set of parameters which decrease detection accuracy, such as
roof accumulation of radon or good ventilation.

Table 5. Indoor vertical results.

(a) Results for each testbed (b) Confusion matrix for ComLab vertical. Ele-

quantified by detection ac- ments show the percentage of tests whose row is
curacy and kappa statistic. the actual floor and column the predicted floor.
|Accuracy Kappa |0 2 3 4

10.5% 1.3%  0.0%  9.2%
0.0% 53% 6.6% 9.2%
0.0% 53% 92% 6.6%
92% 0.0% 0.0% 11.8%

Egaa 72.2% 0.45
ComLab [43.4% 0.29
Math 48.6% 0.35
CS 49.2% 0.23

= w N o

Indoor versus Outdoor An additional aim for GammaSense was to detect
indoor versus outdoor locations. Indoor and outdoor data from ComLab was
used in the evaluation; the outdoor data was collected at two locations: one in
the atrium (a small open yard in the core of the building), and the other on the
lawn in front. The emulation results were:

accuracy: 91.7% and kappa statistic: 0.55.

We hypothesize that the better ”ventilation” outdoor, either in the absence of
building materials (which is the case for the lawn location) or even in their
presence (the case for the inner atrium, surrounded by walls and paved) resulted
in lower counts outdoors.

Sensitivity Analysis As a further analysis, we looked into more detail over the
localization accuracy of the GammaSense algorithm, in the ComLab horizontal
study for detecting among the three building segments, which gave the results
on the first row of Table 4(a).

Specifically, we tested the variation of the detection accuracy and the kappa
statistic as a function of the window size (i.e. the number of the last 60-second
measurements whose mean and variance are given, together with the current
reading, to the localization algorithm; the value for all the results reported above
was five). The variation is reported in Fig. 5. As expected, since radiation counts
are fairly unstable in value from one count to the other (as clear in Fig. 1 and 2),
localization accuracy improves by considering more measurements per location;
up to a number of eight minute-counts, performance parameters increase.



13

Detection accuracy and kappa statistic vs. window size
for ComLab Horizontal

100 T T T T T T T T 1

© 80 0.8
Q
Q
g -~
S 60 0.6
[=
©
>
8 40 0.4
=]
8
R Detection accuracy 102
. Kappa statistic --------
0 L L L L L L L L 0
1 2 3 4 5 6 7 8 9 10
Window size

Fig. 5. The variation of detection accuracy and kappa statistic with window size (i.e.
number of 1-minute measurements taken at each location)

6 Conclusions and Future Work

We investigated the performance of a machine-learning algorithm to pinpoint
roughly the interfloor, intrafloor and indoor-versus-outdoor position of a client
sensing background radioactivity levels indoors. We found that the accuracy
results vary widely with the structure of the fingerprinted building, and report
best performance for interfloor detection in a domestic house (a 72.2% detection
accuracy) and intrafloor detection in a complex building made up of segments
with different construction parameters (a 67.7% accuracy in wing detection).
Also, we verify that the indoor-versus-outdoor detection for outdoor locations
in the vicinity of the building has good performance (91.7%). Finally, we look
into the variation of performance parameters with the window size (i.e. the
number of minutes a client has to measure radiation levels at a location to have
it detected) and report that performance increases with increasing window size,
up to 8 minute-counts.

While we argue that harvesting natural parameters such as background ra-
diation for location detection is worthy of research due to ease of deployment
and a complete independence of infrastructure, we recognize that such tech-
niques offer less performance and control than more standard, infrastructure-
based techniques for localization. We state that—due to the geometry of its
sources indoors—background radioactivity is a desirable signal for use in lo-
cation estimation, especially one based exclusively on natural signals such as
natural light, sound or the chemical components in the air (a potential future
work).

The Geiger-Miiller tube and counter that we used in our experiments are
bulky for real-world deployments; however, miniaturized versions already exist—
for instance, such sensors were integrated into mobile phones for early detection
and localization of radioactive threats [16].
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