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Abstract. Soil ecological networks enable us to better understand the
complex interactions among a great number of organisms in soil. Soil
communities are biotic groups with similar environmental and resource
preferences. Community detection thus provides insights into the mecha-
nisms of the soil ecosystem. Therefore, inferring ecological networks with
clear community structure is essential for investigating the soil ecosys-
tem. We propose FElastic net reqularized Multi-regression (EleMi), a new
method to infer soil ecological networks. To better find the community
structure, EleMi does not infer pairwise interactions, but considers all
organisms simultaneously. Specifically, it regresses the abundance of all
other taxa to one taxon (with shared parameters across soil samples) and
employs Elastic net to avoid over-sparsity and stochasticity. The results
on both synthetic and real biotic data show that EleMi is more robust
and can infer ecological networks with clearer community structure.

Keywords: Soil ecological networks - Community structure - Elastic
Net

1 Introduction

The soil contains a tremendous number of organisms, including bacteria, fungi,
nematodes, protists, etc. Even a handful of soil can contain millions to billions of
organisms [17], most of which are microscopic. Furthermore, these organisms are
not independent, but interact with each other in various ways [8]. It is challenging
to model and study this intricate soil ecosystem.

Nowadays, sequencing technology for genetic information enables researchers
to understand the types and abundances of organisms in the soil [12]. Network
science can then investigate the complex interactions among them. FEcological
networks (in our case, undirected co-occurrence networks) consist of nodes and
edges, with nodes corresponding to organisms and edges to associations between
them, estimated on the basis of their abundance. They have been an important
tool for investigating soil ecosystems [5,20], and highly connected communities
have been found in these networks [21,9]. The ideal method for the inference
of ecological networks from data would (1) retain the density and community
structure present in the real ecosystem, because this internal structure is crucial
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for studying the ecosystem in a modular way, and (2) be robust across soil types,
datasets and experiments.

There already exist methods to construct ecological networks from organism
abundance data, but these have limitations. Traditionally, Pearson and Spear-
man correlation methods [5,23] compute the pairwise correlation coefficient be-
tween organism abundance values across soil samples. These methods always
result in dense (almost fully connected) networks with many spurious correla-
tions, so in practice, the ecologists would employ extra thresholds to make the
networks sparser. To overcome this, SparCC [7] estimates the correlations it-
eratively, to bolster the assumption of network sparsity, and to accommodate
uncertainties arising from random sampling. This leads to high computational
complexity. Unlike SparCC, CCLasso [6] accounts for sparsity with Lasso regu-
larization, and estimates the correlation matrix more accurately. However, none
of these methods account for the network community structure.

On the other hand, soil communities are biotic groups with similar environ-
mental and resource preferences. The detection of community structure gives
insights into interaction patterns, and thus into the mechanisms of the soil
ecosystem—so modular ecological networks are desirable. However, Pearson,
Spearman, SparCC, and CCLasso as methods of network inference all estimate
interactions between organisms pairwise and thus overlook multi-organism in-
teractions, leading to a limited and potentially biased understanding of the true
complexity of the soil ecosystem. SPIEC-EASI [15] methods were then pro-
posed, with two schemes (which we abbreviate here SE_ MB and SE_GL)
to infer sparse networks, both considering interactions between all organisms si-
multaneously. Both SE_MB and SE_ GL methods perform well on accuracy and
reproducibility, and provide a more nuanced understanding of the relationships
between organisms. However, Lasso regression (an important part of these meth-
ods) works poorly under multicollinearity, which is always present in biotic data.
Lasso has the propensity to select one at random from the multicollinear group
[24], thus is more stochastic and also sparser. Ridge regression is a more robust
option, but does not give a sparse solution. Instead, Elastic net [24] uses a linear
combination of Lasso and Ridge, which allows us to combine their advantages
[14].

In the present study, we develop a novel method called Elastic net regularized
Multi-regression (EleMi) to infer ecological networks from abundance data. El-
eMi considers all organisms simultaneously by regressing the abundance data of
all other organisms to one organism. To avoid excessive sparsity and stochasticity
in the inferred network, EleMi employs Elastic net instead of Lasso. We compare
our EleMi with all previous methods. We run this comparison with both synthetic
datasets with different ground-truth community settings, and real-world datasets
with different soil types and biological kingdoms. On synthetic data, when mea-
suring the performance of organism-to-organism edge prediction, EleMi achieves
an overall edge accuracy of 87.93 4+ 0.75, and a precision of 31.14 + 11.00 for
the edges inside communities (out of a maximum of 100). In addition, it shows
superior stability across different community structure settings: even when the



EleMi for soil ecological network inference 3

community structure is weak, EleMi has the highest intra-community precision
among all methods. On real-world datasets, EleMi obtains larger modularity
(corrected @) values on most network types. The result indicates that our pro-
posed EleMi method is more robust and more sensitive to community structure
than other methods. Besides, our method can infer networks with clearer com-
munity structure in different ecological scenarios.

2 Method

Notations and Problem Definition. In this paper, we use italics to indicate
scalars, bold lowercase to represent vectors, bold uppercase to represent matrices.
The I! norm of a matrix is denoted as ||.||1, the Frobenius norm as ||.||r, and the
infinity norm as ||.||s. The transpose and inverse of matrices are X7 and X!
respectively. Diag(X) represents the diagonal matrix of X. Besides, x; and x’
denote the 74, row and column of X.

Suppose that the abundance data of soil taxa is stored in matrix D € R™*P,
where n denotes the number of soil samples and p the number of taxa. We aim
to infer the relationships between taxa to form an undirected weighted network.
The network is represented as G = (V, E), where V is the vertex set of p taxa
and F is the edge set. A € RP*P is the weighted adjacency matrix of network
G. We study the problem of inferring A from D.

2.1 Data Normalization

The abundance data matrix D is obtained using sequencing technology, which
has a series of limitations. First, the overall abundance counts, called sequencing
depths, are artificially limited and differ among soil samples [19]. To address
this, the sequencing depths of all soil samples are normalized to 1. Specifically,
for the iy, row of D, d; = d;/sum(d;). Second, this leads to a compositional
effect since sum(d;) = 1; an increase in abundance for one taxon in this sample
would necessarily result in the abundance decrease of other taxa. This causes a
negative bias, so prohibits statistical analyses among taxa. Thus, the centered
log-ratio (clr) transformation [1] is typically used to remove the sum constraints
of abundance data:

1"

d.

(2

’

= clr(d;) = log(d;/geometricimean(di)) . (1)

Third, the abundance data has many zeroes (is sparse), arising from inefficient
sequence sampling; this causes numerical problems for clr. A common practice
is to replace zeros with small pseudo-counts [2,6,7,15]. For this, we use 1/10
of the minimum non-zero count in each soil sample. After all normalization
steps, the abundance data matrix is transformed into the normalized abundance
matrix X € R™"*P which we use in the next regression step to infer the weighted
adjacency matrix A.
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2.2 Elastic net regularized Multi-regression

Given the normalized abundance data matrix X, we assume that if x* can be re-
gressed to x7, there is an association between taxa i and j. Instead of computing
the associations pairwise, EleMi considers all taxa simultaneously. Specifically, it
regresses the abundance of all other taxa to one taxon, with shared parameters
across soil samples. The objective function is:

1 .
min o || X ~ XA|% + pal Al + p2l| A%, st Diag(A) =0 (2)

with g1 and ps penalty parameters for the /! norm (Lasso) and F-norm (Ridge).

To solve (2) more easily and effectively, we employ the alternating direction
multiplier method (ADMM) [3] to break down the original problem into two
subproblems. Specifically, in our problem, by introducing Z € RP*P to replace
A in the I' norm, the objective function becomes:

1
min o | X = XA[E + pl|Z]h + g2l A%, st.Z=A (3)

The augmented Lagrange function of (3) is defined as:

Y 2

1 P
LAZY.p) = 11X - XA} + 2l + mll Al + 52— 4+ Y

Sl @

F

where p is a positive penalty parameter, and Y € RP*P is the dual matrix
(known as Lagrange multiplier). Then, the problem is broken down into two
subproblems:

1 p Y|?
njn 51X~ XAJ + ol Al + 5 |2~ 4+ 7
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These two subproblems can be optimized separately. Specifically, with Z fixed,
the closed-form solution of (5) is:

F

A = (2uI + XX + p) N (XTX + pZ +7Y) (7)
where I is the unit matrix. (6) can also be solved by soft thresholding [16]:
_ €
2= s (a2 ®
z p

where S (v) represents the shrinkage thresholding operator with the input value
v and the threshold parameter A:

Sx(v) = sign(v) - max (0, |v] — \) (9)



EleMi for soil ecological network inference 5

where sign(v) is the sign function: sign(v) = v/|v| if v # 0, otherwise sign(v) = 0.
The dual matrix can be updated by:

Y =Y +p(Z - A) (10)

The optimization steps are illustrated in Algorithm 1. The source code is
publicly accessible on GitHub: https://github.com/nan-vince-chen/EleMi.

Algorithm 1 EleMi
Input: normalized abundance data matrix X, p1, pe
Initialize: po = 0.1, prmaz = 1010,50 =1.1,Y9 = Zo = 0,t = 0, thresholdcony =
1077, thresholds = 10™*

1: while ||Z; — A.|| > thresholdcony do

2: Fix Z¢, compute A¢4+1 by (7)

3: Fix A¢y1, compute Z:y1 by (8)

4.

5

Compute Yiy1 by (10)
Update p by pt+1 = min(pmaz, Bpt), where

(11)

ﬂo, if HZt+1 — Zt||007 HAt+1 — At“oo > thresholdg
B= i
1, otherwise
6: update t =t +1
7: end while
Output: A = (Z +Z7)/2

2.3 Datasets and Evaluation Metrics

The EleMi method is evaluated using both synthetic and real-world datasets.
We describe these datasets below.

Synthetic Data. To measure performance on community structure and have the
ground truth, we simulate the abundance data using a two-step pipeline:

1. First, the adjacency matriz is synthesized, with pre-defined communities,
using the Gaussian probabilistic graph model [4]. In this model, nodes are
partitioned into communities, and the connections between nodes are prob-
abilistically determined using a Gaussian distribution based on their com-
munity assignment. The NetworkX implementation is used, with the fol-
lowing parameters: total number of nodes p = 300 (similar to the size of
our real-world datasets described below), mean community size s = 30, and
shape parameter v = 5 (which determines the variance of community size
by s/v). We vary the probability of connections in- and outside communities
(pin = {0.35,0.25,0.15}, pous = 0.05) to obtain communities with different
density settings.
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2. Second, the adjacency matrix is used to generate synthetic abundance data
with the R package HARMONIES [13]. The process is repeated with different
sample sizes n = {200, 1000}.

The network inference performance on synthetic data is evaluated with the
accuracy (ACC), precision (PRE) and recall (REC) of the inferred edges. These
performance metrics are also measured separately: overall (for all edges in the
network), for intra-commaunity edges, as well as for inter-community edges. We
also repeat the community generation process randomly 10 times to evaluate
stability.

The simulated adjacency matrices (ground truth) are actually unweighted.
To make the comparison between our inferred weighted networks and this un-
weighted ground truth possible, we “binarize” our inferred weighted networks by
applying a threshold on the weights. For this, we make the assumption that the
weights of inferred edges (which can be positive or negative) represent, in their
absolute value, the strength of connections (0 means no connection). Notably,
most of the competing methods (except Pearson and Spearman) have already
incorporated sparsity settings in their theoretical frameworks. In light of this,
we establish a threshold of 0.8 for Pearson and Spearman networks additionally
for better comparison.

Real-world Data. We also evaluate the performance on real-world datasets (col-
lected in 2021 from Dutch soils): taxa from 4 different kingdoms (bacteria, fungi,
nematodes, and protists) on 2 different soil types (sand and clay). Bacterial
species in the soil are numerous (many thousands), so here they are aggregated
to the genus level. For all other organisms, a network node represents a species.
The abundance data per kingdom is obtained by different measurement pro-
cesses, so we treat the kingdoms as separate ecological networks. Their sizes
(number of taxa p per kingdom) ranges between 83 and 717.

Since there is no ground truth for the real-world ecological networks, we
evaluate the network inference by using also the weighted modularity @ [18§],

defined as:
1 ;o kik; o
Q=53 (4752 ) dteicy) (12

ij

where Ag represents the weighted adjacency matrix element, k; and k; are the
weighted degrees of nodes i and j respectively, m is the total sum of edge weights,
0(c;,cj)is 1if ¢; = ¢; (nodes i and j are in the same community) and 0 otherwise.
The community detection is implemented using greedy modularity communities
function in NetworkX. However, this classical modularity @) has biases. One bias
is towards the number of communities. To mitigate this, Yin et. al introduced eQ
[22]. But, to compare @ values between different networks, bias towards network
density also needs to be corrected, since a lower density would intrinsically lead
to a bigger Q regardless of the community structure. To achieve this, we present
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the corrected @ (c@) based on eQ, defined as:

Cl+1 |Bl/e—1
IC] |El/e

Q=Q- (13)
where |C] is the number of communities, |E| is the number of edges, e = 0.01 x
|[V|? is a scale parameter, where |V| is the number of nodes.

3 Results and Discussion

Tuning parameters. The penalty parameters in EleMi, p1 and po, were first
tuned (to obtain the largest c¢@) in the range {1074,1073,...,103,10%}. Fig. 1
presents these results on two different real soil ecological networks; the results
are consistent on all other network types. The figure shows how c@ varies with
different combinations of values for p; and pe. We observe that EleMi performs
best in modularity when p; = 10~! and over a wide range of o (from 1074 to
1071). We then use these tuned values for the evaluation.

4, -3 2 1\09(p1)

Fig. 1. cQ values vs 1 and p2 on two real soil ecological networks.

3.1 Results on synthetic data

Consistent with the settings, 10.40 + 0.66 communities are generated, each con-
taining 28.85 £ 7.01 nodes. To curtail redundant calculations, we fixed p; and
2 as 107! and 1072 in comparisons on synthetic data.

Fig. 2 shows ACC and PRE achieved by all 9 methods of network inference
on synthetic datasets. Pearson, Spearman, and SparCC obtained poor overall
ACC (counsidering all different settings in Fig. 2, Pearson: 23.43 4+ 5.99; Spear-
man: 18.18 + 3.32; SparCC: 14.55 £ 2.93). This is unacceptable. These methods
yield dense (almost fully connected) networks with many spurious correlations
[11], far from reality. The thresholded Pearson and Spearman obtain much higher
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Fig. 2. Accuracy (ACC) and precision (PRE) on synthetic data with different settings.
pin and pout represent connection probabilities in- and outside communities.

ACC by excluding part of those spurious edges. However, the effect of thresh-
olding on PRE varies among Pearson and Spearman in different settings. When
the sample size is limited (on the first row of Fig. 2, the sample size of 200 is
smaller than the number of nodes), the thresholded Pearson gets higher PRE but
is more unstable, while no significant difference is found between Spearman and
thresholded Spearman. The standard deviations of thresholded methods keep
increasing when the clarity of community structure decreases, which indicates
that it is harder for thresholding to exclude spurious edges when the community
structure is unclear. CClasso has better overall ACC (80.85+22.50), but it is un-
stable: the complexity of recovering inter-community relationships hampers the
accuracy of the inference process, leading to fluctuations in the overall network
inference accuracy.

SE _MB, SE_GL, and our proposed EleMi method all have good overall
ACC (considering all different settings in Fig. 2, SE_MB: 93.20+0.96; SE_ GL:
92.79+1.05; EleMi: 87.93+0.75). However, overall REC for SE_ MB (0.7440.59)
and SE_GL (1.07 £ 0.71) are much lower than REC for our method (8.98 £
1.04), which shows that SPTEC-EAST methods might be over-sparse and wrongly
exclude edges. Also, the intra-community overall PRE of SPIEC-EASI methods
(considering all different settings in Fig. 2, SE__MB: 42.21 + 22.11; SE_GL:
31.51 £ 16.07) and EleMi (31.14 4 11.00) are higher than for the other methods
(from Pearson: 26.97 £ 8.36 to CClasso: 22.38 & 21.14).

It is worth noting that when p;, is close to pous (see the third column of
Fig. 2), which means the community structure is not discernible, our method
achieves a better intra-community PRE (bars in the middle, 20.84 £+ 1.57) than
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SPIEC-EASI methods (SE_MB: 17.70 £+ 13.02; SE_ GL: 16.73 £ 6.42), which
indicates that EleMi is more sensitive to the community structure.

Robustness. SE_MB and SE_ GL have significantly larger standard deviations
of performance compared to EleMi, possibly due to their Lasso terms. Lasso
terms are included in the competing methods to increase network sparsity, aim-
ing to reduce spurious connections caused by compositional effects. However,
multicollinearity is common and implies connections between nodes. When mul-
ticollinearity exists, Lasso tends to randomly select one variable rather than
consider them all. This random selection process results in larger standard devi-
ations and lower REC, especially for SPIEC-EASI. In summary, while Lasso mit-
igates compositional effects, it also weakens the inherent multicollinearity among
nodes, which is undesirable for network inference tasks. Our method introduces
an additional Ridge term to balance these two effects with the parameters p,
and pe. Unlike Lasso, Ridge considers multicollinear variables simultaneously,
but assigns them smaller weights. This makes EleMi more stable and with a
higher recall (REC) than competing methods. Also, as shown in Fig. 1, u1 has
a greater influence on results compared with py, which may indicate that mit-
igating the compositional effect is much more important than preserving the
multicollinearity between nodes. This is also the reason why methods without
Ridge terms also work well.

Community structure. We further investigate the modularity values @ and c@ on
synthetic data. Table 1 shows the result with p;;, = 0.25, poy: = 0.05, for sample
size 200. EleMi obtains the closest density and number of communities to the
ground truth. Although SE_MB and CClasso achieved higher @ and ¢@ values
than EleMi (and also much higher than the ground truth), their communities are
(a) unreasonably many and (b) extremely fragmented. Similar phenomena are
also observed in thresholded Pearson and Spearman. In line with the previous
findings, thresholding has a limited effect on the performance of Spearman, only
making its communities more fragmented. Overall, thresholding does exhibit a
potential benefit in excluding some spurious connections of Pearson (although it
is not consistently stable). This may be useful in differential analyses, but may
not be suitable for community detection tasks. Besides, also consistent with the
previous results, the standard deviation of EleMi is smaller than that of CClasso
and SPIEC-EASI methods.

3.2 Results on real data

Table 2 shows the performance of the different methods on real-world soil data.
Our method exhibits stable and good performance on both @ and ¢@, which
indicates that it can infer networks with clear community structure and is more
robust across different network types. It has been reported that @ values are
normally between 0.3 to 0.7 and values above 0.7 are rare in practice [10]. Larger
@ values do not always indicate better performance, because ) values have biases
towards both the number of communities and network density. SE MB and
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Table 1. Comparison of @ and corrected @ (cQ) values on synthetic data with p;, =
0.25, pout = 0.05, for sample size 200. |C| is the number of communities and std is the
standard deviation.

Q cQ density |C|

Methods mean std ‘mean std ‘mean std l mean std
Pearson 0.061 [ 0.002 | 0.069|0.003 | 0.440 | 0.001 6.300 1.187
Pearson thresholded | 0.898|0.044 | 0.270|0.013| 0.001 |0.000 | 273.900 7.034
Spearman 0.168 [ 0.005 | 0.244|0.010| 0.453 | 0.001 2.100 0.300
Spearman _thresholded| 0.076 | 0.006 | 0.023 | 0.002| 0.005 | 0.000 | 252.600 2.538
SparCC 0.035(0.001 | 0.042|0.002| 0.417 {0.001 4.100 0.300
CClasso 0.454(0.282| 0.139|0.084 | 0.002 | 0.002 | 149.400 | 138.958
SE_MB 0.537(0.075| 0.162|0.023 | 0.002 |0.001 | 135.800 | 46.927
SE GL 0.158 [ 0.047| 0.048|0.014 | 0.004 | 0.002 | 178.300 | 48.019
EleMi 0.173(0.007 | 0.131{0.005| 0.034 {0.000| 15.500 1.746
Ground truth 0.251(0.014| 0.196 {0.013 | 0.035|0.001 | 10.400 0.663

SE _GL achieved @ values around 0.8: this is attributed to their over-division
into an unrealistically large number of communities given the number of taxa,
as well as to the inherent sparsity of the network. Unlike SPIEC-EASI methods,
our method infers networks with a more reasonable number of communities.

We also visualize the detected communities in ecological networks inferred
for nematodes on clay soils (the network denoted N_ C in Table 2). As shown in
Fig. 3, SPIEC-EASI methods have many isolated nodes, and thus unreasonable
numbers of communities detected by SE_MB (37 communities) and SE_GL
(63 communities), despite larger uncorrected Q values. In contrast, EleMi has a
clearer community structure for almost all nodes.

SE_MB SE_GL EleMi
°
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o o o . o o
. ° o ° °
o o © o ° e °
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. . o o &
o o . . o o
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Fig. 3. Force-directed visualization of communities in ecological networks of nematodes
on clay (N _C). Different colors represent different communities. The size of the nodes
is proportional to their strength.
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Table 2. Comparison of @ and corrected @ (¢@) on real-world soil ecological networks.
The network names in the first column denote different organism kingdoms (B: Bacte-
ria, F: Fungi, N: Nematodes, P: Protists) on different soil types (C: Clay, S: Sand). E.g.,
B_C is Bacteria on Clay. p is the number of nodes. |C| is the number of communities.

Network (p) Pearson [ Pearson thresholded [ Spearman

Q cQ |density ||C]| Q cQ |density ||C]| Q cQ | density | |C]
B_C (317) 0.081 | 0.095 | 0.461 510.833]0.251 | 0.002 {208 |0.093|0.137 | 0.482 2
B S (298) 0.088 [ 0.107 | 0.478 410.581|0.177| 0.010 7210.144 | 0.212 | 0.484 2
F_C (717) 0.111 [ 0.130 | 0.439 510.875|0.265 | 0.004 [111|0.020|0.029 | 0.491 2
F_S (660) 0.116 [ 0.136 | 0.470 510.758 | 0.237 | 0.019 23 10.040 | 0.052 | 0.490 3
N_C (92) 0.151 [ 0.169 | 0.458 710.864 | 0.263 | 0.004 65| 0.063 | 0.093 | 0.481 2
N _ S (83) 0.221 | 0.252 | 0.471 610.719 | 0.372 | 0.020 250.049 | 0.073 | 0.487 2
P_C (395) 0.083 [ 0.094 | 0.453 610.901|0.271 | 0.001 [254|0.035|0.052 | 0.485 2
P S (348) 0.079 | 0.096 | 0.471 410.836 | 0.253 | 0.004 |107|0.073|0.095| 0.485 3
Network (p) Spearman thres.holded [ SparCC . [ CClasso '

Q cQ | density | |C] Q cQ | density | |C] Q cQ | density | |C]
B _C (317) 0.040 | 0.036 | 0.086 |114|0.094|0.138| 0.457 210.096 | 0.117 | 0.392 4
B_S (298) 0.123 [ 0.110 | 0.083 4510.089 | 0.116 | 0.465 310.125]0.162 | 0.364 3
F_C (717) 0.013 | 0.013 | 0.235 |134|0.062|0.081 | 0.442 310.135]0.160 | 0.196 4
F_S (660) 0.047 [ 0.044 | 0.165 68 | 0.068 | 0.089 | 0.462 310.484 | 0.359 | 0.029 8
N C(92) 0.031 [ 0.029 | 0.129 3210.106 | 0.139 | 0.448 310.157]0.182 | 0.297 5
N _ S (83) 0.059 [ 0.059 | 0.165 19]0.130 | 0.169 | 0.452 310.618 | 0.504 | 0.040 11
P_C (395) 0.021 [ 0.019 | 0.132 |136|0.089|0.116 | 0.457 310.105]0.136 | 0.358 3
P _S (348) 0.044 | 0.041 | 0.105 |103|0.067|0.082| 0.457 410.674|0.204 | 0.002 |101

Q cQ | density | |C] Q cQ | density | |C] Q cQ | density | |C]
B C (317) 0.588 [ 0.186 | 0.009 18 [ 0.207 | 0.063 | 0.014 |128|0.436 | 0.288 | 0.025 9
B S (298) 0.733 | 0.228 | 0.006 28 10.510 | 0.155 | 0.009 9310.494 | 0.299 | 0.022 10
F_C (717) 0.520 | 0.165 | 0.007 18 10.092 | 0.109 | 0.166 410.602|0.193 | 0.011 15
F S (660) 0.497 | 0.160 | 0.008 14 | 0.662 | 0.203 | 0.009 46 | 0.486 | 0.155 | 0.012 16
C (92) 0.809 | 0.249 | 0.007 3710.622 1 0.190 | 0.005 63 ]0.439 | 0.398 | 0.054 9
S (83) 0.814 | 0.259 | 0.011 17 |0.842 | 0.258 | 0.004 4710.477 | 0.429 | 0.052 9
C (395) 0.536 | 0.170 | 0.008 181 0.075|0.052 | 0.031 |159|0.424|0.180| 0.017 13
S (348) 0.722 | 0.222 | 0.004 3710.699 | 0.211 | 0.003 (140 |0.443|0.227 | 0.019 12

c@ further corrects Q. As shown in Fig. 4 in the trend lines, ¢} mitigates
the bias of ) values towards network density. Unlike e@, ¢@Q cannot serve as
an objective metric for community detection, since the density of networks is
already determined when detecting the communities. Instead, c¢@ allows for fairer
comparisons of community structure between different networks.

Limitations. Firstly, the symmetry of adjacency matrix A in our method is
guaranteed by computing the average of its transposition and itself, which is a
sub-optimal solution. In the future, we would add symmetry as a condition in the
theory without greatly increasing the computation complexity. Secondly, the syn-
thetic adjacency matrix generated with predefined community structure should
ideally be weighted, and the simulation of abundance data from a weighted ad-
jacency matrix should also be better explored. We expect to implement these
two steps into a future improved method. Thirdly, we only choose a traditional
community detection method in order to show that EleMi-inferred networks can
obtain good community structure even with the simplest community detection
algorithm. Performance with other community detection methods or other qual-
ity metrics can be further investigated in the future.
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Fig. 4. @ and corrected Q (cQ) vs. network density. Data points represent different
network-inference methods on real data. The trend lines show linear regression.

4 Conclusion

This paper proposes a robust method to infer soil ecological networks. In order to
evaluate the proposed new method, we conduct comparison experiments on both
synthetic and real-world datasets. On real-world datasets, rather than using the
traditional @ value, we propose a new corrected @ (¢Q) value to compare the
quality of detected communities from networks of different sizes.

The results show that our method can infer ecological networks with stable
performance under different community structure settings and is more sensitive
to community structure. It is more robust when inferring networks with clearer
community structure for different real-world ecological networks. Moreover, our
proposed c@) can mitigate the bias of @) values towards network density thus
allowing for fairer comparisons of community structure between different net-
works.
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