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Cyber-physical systems have increasingly intricate architectures and failure modes, which is due to an explosion
of their complexity, size, and failure criticality. While expert knowledge of individual components exists, their
interaction is complex. For these reasons, obtaining accurate system reliability models is a hard task. At the same
time, systems tend to be continuously monitored via advanced sensor systems. This data describes the components’
failure behavior, and can be exploited for failure diagnosis and learning of reliability models. This paper presents an
effective algorithm for learning of Fault Trees from data. Fault trees (FTs) are a wide spread formalism in reliability
engineering. They capture the failure behavior of components and their propagation through an entire system. To
that end, we first use machine learning to compute a Bayesian Network (BN) highlighting probabilistic relationships
between the failures of components and root causes. Then, we apply a set of rules to translate a BN into a FT, based
on the Conditional Probability Tables to decide, amongst other, the nature of gates in the FT. We evaluate our method
on synthetic data and on a benchmark set of FTs.

Keywords: fault tree induction, safety-critical systems, cyber-physical systems, machine learning, Bayesian network
inference, risk analysis, failure diagnosis.

1. Introduction
Reliability engineering provides methods, tools
and techniques to evaluate and mitigate the risks
related to complex systems. Fault tree analysis
is one of the most prominent technique in this
field and is widely deployed in the automotive,
aerospace and nuclear industry.

Fault trees (FTs) Vesely et al. (1981) are deter-
ministic graphical models that represent how com-
ponent failures arise and propagate through the
system, leading to system-level failures. Compo-
nent failures are modelled in the leaves of the tree
as basic events. FT gates model how combina-
tions of basic events lead to a system failure, rep-
resented by the top event in the FT. The analysis
of such FTs (Ruijters and Stoelinga, 2015) is mul-
tifold: they can be used to compute dependability
metrics such as system reliability and availability;
understand how systems can fail; identify the best
ways to reduce the risk of a system failure, etc.

A key bottleneck in FT analysis is, however,
the effort needed to construct a faithful FT model.
FTs are usually built manually by domain experts.
Given the complexity of today’s systems, indus-
trial FTs often contain thousands of gates. Hence,
their construction is a very intricate task, and also
error-prone, since their soundness and complete-
ness largely depends on domain expertise.

With the emergence of the industrial Internet-

of-Things, Cyber-physical systems are more and
more equipped with smart sensor systems, moni-
toring whether or not a system component is in a
failed state or not. Their data can, therefore, be
very fruitfully exploited to learn reliability mod-
els. Such data can be crucial for the engineers
to build a FT (Joshi et al., 2007). Recent work
focused on learning FTs from observational data,
identifying causalities from data (Nauta et al.,
2018). In this paper, we focus on FT genera-
tion from data, using the prior identification of
Bayesian Networks (BNs).

Bayesian Networks (Pearl, 1988) are proba-
bilistic graphical models widely used in industry
and healthcare as a diagnosis tool. BNs are also
used in dependability analysis of systems, being
an interesting formalism for the generation of
qualitative and diagnosis measurements. In this
case, given a FT representing a system’s failure
behavior, a set of rules are applied to transform
this FT into a BN, to later generate these metrics
(Bobbio et al., 2001).

This methodology caught our attention: con-
sidering a case where data is available but the
FT structure is unavailable mostly due to lack
of expert knowledge, the reverse operation seems
needed. We considered the case where observa-
tional data is available, and where the basic and
intermediate events, i.e. observed variables, are
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Fig. 1.: FT learning framework.

also known. Learning the structure as well as the
parameters of a BN can be optimally performed
from data (Cooper, 1990). Given the learned BN,
we apply a set of translation rules to translate any
BN node (a random variable) into an FT gate (a
deterministic OR or AND gate), using the prob-
abilistic information from the local conditional
probability tables inferred from data. Our frame-
work is depicted in Fig. 1.

We applied our algorithm, both on synthetic
data and a benchmark of FTs previously studied
in the literature. Our experiments show that our
method is efficient and accurate (> 99%). Being
a first step, our algorithm focuses on static FTs,
featuring only Boolean gates. An important topic
for future work is the extension to dynamic FTs
(Dugan et al., 1990). Therefore, we will discuss
an extension to learning of dynamic BNs, than can
be in turn translated into dynamic FTs.

This paper is organized as follows. Section 2
reviews related work on learning FTs from data.
In Section 3 we recall preliminary definitions on
FTs and BNs. We present then in Section 4 our
technique to infer a FT using BN translation. In
Section 5 we show the results we achieved. Fi-
nally, we discuss and conclude about future work.

2. Related Work
Related work on learning FTs spans several areas
of research: recent work on the generation of FTs
from observational data describing the system;
since FTs are in essence Boolean functions, lit-
erature on learning Boolean functions from obser-
vational data; and, finally, relations between BNs
and FTs.

Learning Boolean formulas and classifiers
from data. Observational data was used to gen-
erate FTs with the IFT algorithm (Madden and
Nolan, 1994) based on standard decision-tree sta-
tistical learning. The advantage of learning a
graphical decision tree out of data is the inherent
interpretability of decision-tree models, and their
ease of translation into other graphical models.

Boolean formulas or networks are learnt us-
ing a similar tree-based method (Kearns et al.,
1994). The classic C4.5 learning algorithm yields
a Boolean decision tree that is easily translatable
into a Boolean formula, by constructing the con-
junction of all paths leading to a leaf modelling
a True value (i.e., system failure), and then sim-
plifying the Boolean function (by either comput-
ing its conjunctive or disjunctive normal form).
The resulting models encode the same informa-
tion as a decision tree (i.e., a classifier for the
observational data), so they lack the validation of
causal relations, but are expected to preserve their
predictive power about the system. Furthermore,
Boolean formulas were also machine-learnt using
black-box classifiers (classifiers not easily inter-
pretable as a graphical model). Such methods
include Support-Vector Machines, Logistic Re-
gression and Naive Bayes.

Learning causal models from data.
LIFT (Nauta et al., 2018) is a recent approach
for learning static FTs from data, with Boolean
event variables, n-ary And/Or gates, annotated
with event failure probabilities. All intermediate
events to be included in the FT must be present
in the dataset, but not all may be needed in the FT.
LIFT also includes a causal validation step to filter
for the most likely causal relationships among
system events, but the worst-case complexity is
exponential in the number of system events in
the data. Its main advantage is that of being one
of the few automated FT-learning methods which
specifically validate causality. However, LIFT has
been shown to be sensitive to noise, which is a
drawback when dealing with real-word data.

Bayesian Networks (Li and Shi, 2007) are stan-
dard graphical models which can be learnt from
data. They are widely used in industry, as well as
in the health domain as a diagnosis tool. These
models have straightforward translations into FTs
(Bobbio et al., 1999, 2001), which are used in
FT analysis in order to compute metrics such
as reliability or expected number of failures. It
has been shown that BNs are hard to synthesize
accurately (Chickering et al., 2004). However,
assumptions provided by domain experts can re-
duce the search space for uncovering these models
from data.

While previous study (Khakzad et al., 2011)
favour BNs due to their more general formalism,
both in terms of uncertainty as in nominality of
data variables, we stand up for FTs, due to their
intuitive formalism preferred in industry. We
propose a novel method to learn a FT from a
tabular dataset composed of observational tuples,
in which values (failures) for each Boolean basic
event, intermediate event and top event in the
system are known. We compare it with a subset
of these existing learning algorithm, in terms of
performance when fitting data.
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3. Background
We first define the structure of FTs, consisting
of logic gates and Boolean fault events (an event
has value True if that fault occurs in the system).
Intermediate events (IEs) in the FT are logical
combinations of other events (i.e. the OR or AND
of a set of events), with only basic events (BEs) as
the leaves of the tree, and one special intermediate
event called the top event as root. We also for-
mally define an observational dataset from which
we learn an FT. The top event of the FT must be
a variable in the dataset and can be seen as the
outcome to predict by the FT. We finally describe
Bayesian Networks, which are graphical models
representing probabilistic dependencies between
variables. The formulations below follow defini-
tions from Scutari (2010) and Nauta et al. (2018).

3.1. Fault Trees
Fault trees model how component failures propa-
gate into system failures. Subtrees can be shared,
so FTs can be directed acyclic graphs (DAGs).
The leaves of the tree model component failures
and are called basic events. Two types of gates
(And and Or) model how BE failures lead to
system failures. The graphical notation for gates
and basic events is given in Fig. 2.

A B C

Fig. 2.: Graphical notation for And (A) and Or
(B) gates, and for a basic event (C).

Definition 3.1. A gate G is a tuple (t, I, O) s.t.:

• t is the type of G with t ∈ {And, Or}.
• I is a set of n ≥ 2 input events of G.
• O is the event that is the output of G.

We denote by I(G) the set of events in the input
of G and by O(G) the event in the output of G.

Definition 3.2. An And gate is a gate (And, I, O)
where output O occurs if and only if every i ∈
I occurs. An Or gate is a gate (Or, I, O) where
output O occurs if and only if at least one i ∈ I
occurs.

Definition 3.3. A basic event B is an event with
no input and with a failure rate denoted pB .

Other gates are also used: the XOR (exclusive
OR), voting, and NOT gates (Vesely et al., 1981;
Lee et al., 1985). The root of the tree is the top
event T , which represents the failure condition of
interest, such as the stranding of a train, or the
unplanned unavailability of a satellite. An FT fails
if its top event fails.

Definition 3.4. A fault tree F is a tuple
(BE, IE, T,G) where:

• BE is the set of basic events.
• IE is the set of intermediate events.
• T is the top event, T ∈ IE.
• G is the set of gates; ∀G ∈ G, I(G) ⊂

IE ∪ BE, O(G) ∈ IE.
• The graph formed by G should be con-

nected and acyclic, with the top event T
as unique root.

3.2. Bayesian Networks
Bayesian networks (BNs) are graphical mod-
els where nodes represent random variables and
arrows represent probabilistic dependencies be-
tween them. In the remaining of this paper, we
consider the case of binary discrete BNs where
variables are Boolean.

A

CB

ED F

(a) Example BN.

P (A | B,C)

A = 0 A = 1

B = 0 C = 0 1 0
B = 0 C = 1 0 1
B = 1 C = 0 0 1
B = 1 C = 1 0 1

(b) Example CPT for variable A.
P (B | D,E, F )

B = 0 B = 1

D = 0 E = 0 F = 0 1 0
D = 0 E = 0 F = 1 1 0
D = 0 E = 1 F = 0 1 0
D = 0 E = 1 F = 1 1 0
D = 1 E = 0 F = 0 1 0
D = 1 E = 0 F = 1 1 0
D = 1 E = 1 F = 0 1 0
D = 1 E = 1 F = 1 0 1

(c) Example CPT for variable B.

Fig. 3.: Example BN and related CPTs.

The graphical structure G = (V, A) of a
Bayesian network is a directed acyclic graph
(DAG), where V = BE ∪ IE is the set of nodes
and A is the set of edges. We say that if a node
has a parent node, then the node is marginally
dependent (or unconditionally dependent) of the
parent node. A node is said to be a root node
when it has no parent node. Each node in the BN
structure is associated to a Conditional Probability
Table (CPT). The joint distribution of the BN can
be factorized according to its graphical structure,
which leads to:

P (V1, . . . , Vn) =

n∏
i=1

P (Vi | ΠVi
) (1)

where ΠVi denotes the set of parents of the node
Vi in the graph G. In such a case, both the joint
and the local distributions (i.e. the CPTs) are
multinomial.

An example BN and related CPTs is shown in
Fig. 3. Note here that these CPTs are a case of
certainty, where the conditional probabilities are
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set to either 0 or 1 (unlike CPTs with uncertainty,
where probabilities range from 0 to 1).

3.3. Learning Dataset
We define a dataset as a collection of records.
Each record is a valuation for the set of BEs and
IEs, indicating whether a failure was observed for
that BE/IE. Further, we assume that our dataset is
labeled, i.e., also indicates whether the top event
T has failed, yielding the outcome of the FT.

Definition 3.5. A record R over the set of
variables BE ∪ IE is a list containing tuples
[(Vi, vi)],∀Vi ∈ BE ∪ IE, where vi is a Boolean
value of Vi.

We call a noisy record one where the value of at
least one variable has been measured incorrectly.

Definition 3.6. A dataset D is a set of r records,
all over the same set of variables BE ∪ IE. Each
variable name in BE ∪ IE forms a column in D,
and each record forms a row.

Table 1 shows an example dataset for the BN
from Fig. 3a.

A B C D E F
0 0 0 0 0 0
0 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 1 0
0 0 0 1 1 0
1 0 1 0 1 1
0 0 0 0 1 0
1 0 1 0 1 1
0 0 0 0 1 0
1 1 0 1 1 1

Table 1.: Example dataset for BN in Fig. 3a.

4. Learning Fault Trees from Diagnosis
Models

Learning of BNs is two-fold: the first task is to
perform structure learning, where the goal is to
learn the skeleton of the BN together with the
directions of the dependencies. The second task
is parameter learning, to approximate CPTs from
data (e.g. via maximum likelihood estimation).
Structure learning is typically done by heuristic
search (using e.g. the BIC scoring function and a
TABU search). It provides approximate Bayesian
network structures in reasonable time, as finding
optimal structure has been shown to be intractable.
It is important to note here that the complexity of
structure learning can be reduced by involving do-
main knowledge: if one knows what dependencies
have to be present (or not) in the structure, this
given information reduces the search space of the
structure.

In this section, we show how we perform ef-
ficient structure and parameter learning of BNs

from data. We also show how we achieve the
translation of a BN into a FT thanks to a set of
translations rules.

4.1. Learning of Bayesian Networks
Structure Learning BN structure learning algo-
rithms can be grouped in two categories: The
first one, constraint-based algorithms (Bonissone
et al., 1991), which learn structure causal models.
They can be summarized in two steps: (1) learn
the skeleton (i.e. the undirected graph underlying
the network structure) of the network; (2) set
direction of all the edges. The second category,
score-based algorithms, assign a score to each
candidate BN and try to maximize it with some
heuristic search algorithm. Greedy search algo-
rithms (such as hill-climbing or tabu search) are
common.

Blacklisting Prior assumptions on the data or the
problem to solve can be integrated in the learning
algorithm by means of blacklists and whitelists.
They define arcs which are respectively missing or
present in the BN. In our setting, we defined three
families of dependencies which are not desired in
the BN structure. These undesired arcs represent
conditional dependencies which are assumed not
to be relevant in the BN. Our blacklisted arcs are
the followings:

• T → Vi,∀Vi ∈ BE ∪ IE. However, it
is allowed that Vi → T because this cap-
tures the natural cause-effect direction of
the system being modeled.

• Bi → Bj ,∀Bi, Bj ∈ BE. Two any BEs
are not involved in direct probabilistic
interaction among themselves (however,
this constraint can be relaxed, see Sec-
tion 6).

• IE → B, ∀IE ∈ IE,∀B ∈ BE.
However, it is allowed that IE → B
because this captures the natural cause-
effect direction of the system being mod-
eled. This constraint is particularly nec-
essary for a good identification of which
variables will play the role of gates once
the BN is translated into a FT.

The blacklisted arcs of BN in Fig. 3a are then
as follows:
• A→ B
• A→ C
• A→ D
• A→ E
• A→ F
• C → D
• C → E

• C → F
• D → C
• D → E
• D → F
• E → C
• E → D
• E → F

• F → C
• F → D
• F → E
• B → C
• B → D
• B → E
• B → F

Parameter Learning The goal of parameter
learning is to approximate, given data on random
variables, the CPTs of a given BN structure. After
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learning the parameters via maximum likelihood
estimation, the BIC (Bayesian Information Cri-
terion) score of the BN is computed. If M is a
candidate BN, then its BIC is given by:

BIC(M) = −2 ln(L) +K ln(N) (2)

where L is the maximized log-likelihood ofM ,K
is the number of parameters of M , and N is the
sample size (i.e. the size of the dataset). Models
with smaller BIC are preferred. It measures not
only the fitness of the model to the data, but also
has the advantage of controlling for the model
complexity.

4.2. Translation Rules
In Bobbio et al. (1999, 2001), a two-fold method
to translate a FT into a BN was proposed. It con-
sists of a one-to-one transformation of FT gates
into event nodes in the BN, as well as the related
CPT generation:

(1) Translate T and all Vi ∈ BE ∪ IE into BN
nodes.

(2) Add probabilistic dependencies between re-
lated events (BEs or IEs).

(3) Set failure probabilities of BEs to follow def-
initions of pB for all B ∈ BE.

(4) Set failure probabilities of IEs to follow the
truth tables of related events.

In practice, the latter can be replaced based on
expert knowledge. This is in order to relax con-
ditions with certainty to CPTs with uncertainty.

Root Nodes

Intermediate Nodes

Leaf Node

BNs

BE

IE

T

FTs
(2)

(3)

Fig. 4.: Translation of a BN into a FT.

In our case, a BN and the associated CPTs are
already learned from data. As a consequence, we
have to perform the reverse translation compared
to Bobbio et al. (1999, 2001). Our translation is
below, and also shown in Fig. 4:

(1) Remove all nodes which are not connected to
the system level failure node in the BN.

(2) For each root node of the BN, create a BE
in the FT (each root node in the BN is nec-
essarily a basic event, following blacklisting
constraints). For each created BE B, set pB
to P (B = 1).

(3) For each non-root node of the BN, create an
IE in the FT.

(4) Connect events in the FT the way their related
nodes in the BN are connected.

(5) For each gate in the FT, identify its nature (Or
or And) by inspecting the CPTs.

The identification of the nature of a gate follows
the CPT of its related node. For each node Vi ∈
IE, we apply the following set of translation rules:

(1) if P (Vi = 1 |
∧
c∈C

c = 1) = 1 where C is the

set of parents of Vi, then Vi is an And gate in
the FT.

(2) P (Vi = 1 |
∨
c∈C

c = 1) = 1 where C is the

set of parents of Vi, then Vi is an Or gate in
the FT.

P (A = 1 | B = 1 ∨ C = 1) = 1

P (B = 1 | D = 1 ∧ E = 1 ∧ F = 1) = 1

(a) Satisfied/Derived conditions in CPTs.

A

CB

ED F

(b) Example BN.

A

B

D E F

C

(c) Induced Fault Tree.

Fig. 5.: Translation of BN of Fig. 3 into a FT.

Uncertainty One can see here that probabilistic
non-root nodes of a BN are translated into de-
terministic gates in the FT. The certainty feature
of the CPTs may be unrealistic in the real-world.
One may prefer to assume that the logical gates
are noisy (i.e. probabilistic) and return a FT gate
G with an associated probability pG, as being the
probability of failure of the IE when the logical
condition is met. Therefore, we defined an alter-
native uncertain case for translating a FT:

(1) if P (Vi = 1 |
∧
c∈C

c = 1) > 1− ε where C is

the set of parents of Vi, then Vi is an And gate
in the FT with pG = P (Vi = 1 |

∧
c∈C

c = 1)

(2) P (Vi = 1 |
∨
c∈C

c = 1) > 1 − ε where C is

the set of parents of Vi, then Vi is an Or gate
with pG = P (Vi = 1 |

∨
c∈C

c = 1)

where ε is a tolerance factor for deciding whether
a gate is an Or gate or an And gate.
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In case none of the conditions above hold, we
would recommend to leave out the variable from
the dataset, since it may not be relevant to the
problem. Note here that, since subtrees can be
shared in a FT, it may be the case that a BE or
an IE is an input to more than one gate.

An example of translation of BN and CPTs in
Fig. 3 into an FT is shown in Fig. 5.

5. Experimental Evaluation
We have evaluated the efficiency and effectiveness
of our method for a set of synthetic cases, as well
as for industrial benchmarks. We compared our
methods with other learning techniques, among
others, five approaches from the literature. The
accuracy of a FT is the number of records in the
dataset for which the value of the top event, given
the values of the BEs, is correctly computed.

5.1. Experimental set up
The first three methods in our evaluation are: (1)
Support Vector Machine (abbreviated svm in the
figures), (2) Logistic Regression (log) and (3)
Naive Bayes Classifier (nba). These methods are
Boolean classifiers that, given the values of the
BEs, predict the value of the top event T . During
our experiments, we used state-of-the-art Python
implementations for these techniques. Being clas-
sifiers, methods (1) - (3) do not yield fault tree
models, only a prediction for the value of T .
Then, we have used three methods that do learn
FT models: (4) We have compared our results
to the well-known C4.5 algorithm for learning
decision trees (abbreviated c45). Decision trees
can be transformed to FTs, by first computing
in the decision tree the conjunction of all paths
leading to failure leaves, and then simplifying the
conjunction to CNF. (5) We have also compared
to the earlier LIFT approach, which returns a FT.

To compare these methods, the observational
data was divided into 2 sets: one training set,
used as input to the learning algorithms (with an
average of 2/3 of all possible observations and
possibly duplicate records), and a test set con-
taining all observational variables (complete truth
table), used to evaluate the solution returned by
our algorithms. We used the library bnlearn to
learn BNs (Scutari, 2010). The parameters of
our algorithm were a tabu search for learning the
structure of the BN, and the maximization of the
BIC score for learning the parameters. The black-
listing of edges was set as detailed in Section 4.1.
We considered the uncertain case, with ε = 0.1.

An extra experiment was carried out (bn-o)
where edges Vi → T for all parent node of T in
the BN are known and set as whitelist, i.e. the
top event and its direct input events in the FT are
known. This is a realistic case in practice: indeed,
experts may partially know the structure of the
FT (hence of the BN), and like to include this
information prior to the learning of the BN.

5.2. Synthetic Dataset
We first considered 100 randomly generated FTs
with 6 to 15 BEs, and for each FT a randomly
generated data set, with 200 to 230k records. The
FTs considered contain on average 5 gates, and
BEs probabilities range from 1e-4 to 1e-2. Figures
6 and 7 present respectively the average accuracy
and the average runtime, both as functions of the
number of BEs.

6 7 8 9 10 11 12 13 14 15
number of BEs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
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cu
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bn-o
c45
lift
svm
log
nba

Fig. 6.: Accuracy as a function of BEs.

6 7 8 9 10 11 12 13 14 15
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bn-o
c45
lift
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log
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Fig. 7.: Runtime of different algorithms.

Fig. 6 shows that our methods bn and bn-o
are optimal as well in terms of accuracy as run-
time. When the number of BEs in the FT is high,
svm and c45 are equally optimal. However, the
svm method only provides a classifier, not a FT.
Further, the c45 method does not perform well in
terms of runtime, see Fig. 7. Methods log and nba
are fast, but provide low accuracy. Finally, we see
that LIFT obtains less good results. This can be
explained by an exponential complexity, as well
as the fact that LIFT return FTs with a low depth
in most of the cases or even missing many BEs.

We also carried out an experiment where noise
is added in the dataset, in order to test the robust-
ness of the different algorithms. The noise varies
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Fig. 8.: Effect of noise on the learned FTs.

from 0 to 5% of noisy records. In the results
shown in Fig. 8, we see that our methods are
relatively robust against noise compared to other
methods. However, we see that the accuracy of
the learned FTs drops whenever noise is present
in the dataset.

5.3. Fault Tree Benchmark
We present here the results we obtained for a set
of publicly available benchmark suitea, consisting
of industrial FTs from the literature (Boudali and
Dugan, 2005; Junges et al., 2017; Montani et al.,
2006; Stamatelatos et al., 2002). The FTs used
are: Cardiac Assist System (CAS), Container Seal
Design Example (CSD), Multiprocessor Comput-
ing System (MCS), Monopropellant Propulsion
System (MPS), Pressure Tank (PT), Sensor Fil-
ter Network (SF14) and Spread Mooring System
(SMS A1).

# gates # BEs T prob BEs probs
CAS 8 9 3e-6 [1e-6, 5e-6]
CSD 4 6 1e-6 [1e-5, 1e-1]
MCS 10 11 6e-6 [2e-6, 8e-2]
MPS 9 9 2e-5 [5e-5, 2e-2]
PT 5 6 4e-5 [5e-6, 1e-4]
SF14 8 9 3e-3 [2e-3, 3e-3]
SMS A1 7 10 3e-2 [6e-8, 9e-3]

Table 2.: Statistics on datasets.

The structural composition of these FTs (stated
in terms of number of gates, number of BEs,
probability of the top event and probabilities of
BEs) is shown in Table 2.

Whereas the FT models were given in the liter-
ature, no data sets were available. Therefore, we
have randomly generated these data sets, contain-
ing 10M records per case (in order to handle low
failure rates). Since the benchmark does provide
failure probabilities per BEs, we have used those

ahttps://dftbenchmarks.utwente.nl/
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Fig. 10.: Results of FT Benchmark (runtime).

probabilities: If pB is the failure probability of
BE B in the benchmark, then we set, in each data
record, R[B] = 1 with probability pB .

6. Discussion
One of the limitations of our work is the need of
data exhaustiveness: indeed, we require knowl-
edge about all BEs, as well as all intermedi-
ate events. One can imagine a realistic case
where some of the intermediate events are miss-
ing. However, uncovering these hidden variables
is known to be hard in BN synthesis.

Another limitation is the focus on static FTs.
However, one can see straightforward extensions
that could use the formalism of dynamic FTs
(DFTs) Dugan et al. (1990). These come with
additional gates, catering for common dependabil-
ity patterns like spare management and functional
dependencies. Some additional translation rules
lead to semantics missing in static FTs, but present
in DFTs:

(1) Functional Dependency (FDEP): models how
the occurrence of an event triggers the failure
of other components. So if P (Vi = 1 | =⇒

c∈C

c = 1) = 1 where C is the set of parents of
Vi, then c → Vi,∀c ∈ C is a FDEP in the
DFT.

Also, some constraints relaxation, e.g. in the
blacklisting of edges, can lead to DFT gates:
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(2) Rate Dependency (RDEP): models how a BE
failure influences other BE failures. When the
blacklisting of edges Bi → Bj ,∀Bi, Bj ∈
BE is relaxed, then edge Bi → Bj is a RDEP.

Another interesting formalism to take into ac-
count is the one of dynamic BNs: they relate
variables to each other over time. It is known
that dynamic BNs can model, among others, pri-
ority AND gates of dynamic FTs (Ruijters and
Stoelinga, 2015). We leave the translation of
dynamic BNs into dynamic FTs for future work.

7. Conclusion
We presented an efficient method for automated
generation of FTs from pre-computed BNs from
data. To that extent, we defined a set of trans-
lation rules from one formalism to another. Our
results show that our method is particularly robust
to noise. We have also applied our technique
to a benchmark of FTs to ensure its practical
relevance. Our future research will focus on the
learning of dynamic FTs. This will be done by
the prior computation of a dynamic BN from time
series, and the translation of such a dynamic BN
to a dynamic FT with appropriate rules.
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