
The Impact of Topology on Energy Consumption for

Collection Tree Protocols: an Experimental Assessment

through Evolutionary Computation

Doina Bucura, Giovanni Iaccab, Giovanni Squilleroc, Alberto Tondad

aJohann Bernoulli Institute, University of Groningen, Nijenborgh 9, 9747 AG
Groningen, The Netherlands

bINCAS3, Dr. Nassaulaan 9, 9401 HJ, Assen, The Netherlands
cPolitecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

dINRA UMR 782 GMPA, 1 Avenue Lucien Brétignières, 78850, Thiverval-Grignon,
France

Abstract

The analysis of worst-case behavior in wireless sensor networks is an ex-
tremely difficult task, due to the complex interactions that characterize the
dynamics of these systems. In this paper, we present a new methodology
for analyzing the performance of routing protocols used in such networks.
The approach exploits a stochastic optimization technique, specifically an
evolutionary algorithm, to generate a large, yet tractable, set of critical net-
work topologies; such topologies are then used to infer general considerations
on the behaviors under analysis. As a case study, we focussed on the energy
consumption of two well-known ad-hoc routing protocols for sensor networks:
the multi-hop link quality indicator and the collection tree protocol. The evo-
lutionary algorithm started from a set of randomly generated topologies and
iteratively enhanced them, maximizing a measure of “how interesting” such
topologies are with respect to the analysis. In the second step, starting from
the gathered evidence, we were able to define concrete, protocol-independent
topological metrics which correlate well with protocols’ poor performances.
Finally, we discovered a causal relation between the presence of cycles in a

Email addresses: d.bucur@rug.nl (Doina Bucur), giovanniiacca@incas3.eu
(Giovanni Iacca), giovanni.squillero@polito.it (Giovanni Squillero),
alberto.tonda@grignon.inra.fr (Alberto Tonda)

All authors contributed equally and their names are listed in alphabetical order.

Preprint submitted to Applied Soft Computing Journal October 30, 2013

disconnected network, and abnormal network traffic. Such creative processes
were made possible by the availability of a set of meaningful topology exam-
ples. Both the proposed methodology and the specific results presented here
– that is, the new topological metrics and the causal explanation – can be
fruitfully reused in different contexts, even beyond wireless sensor networks.

Keywords: Collection Tree Protocol (CTP), MultiHopLQI (MHLQI),
Wireless Sensor Networks (WSN), Evolutionary Algorithms (EA), Routing
protocols, Verification, Energy consumption

1. Introduction

Back in 1620, Sir Francis Bacon steadfastly championed the methodical
observation of facts as the means of studying and interpreting phenomena.
The original “Baconian method”, as described in the Novum Organum Scien-
tiarum1, has since been replaced in science, yet the importance of collecting
and cataloging evidence is not called into question. Oddly enough, after four
centuries, a common problem in computer science is precisely the limited
availability of “facts” to start formulating new hypothesis from.

The size and complexity of modern computer systems is skyrocketing,
posing serious problems to designers and practitioners. While usually a single
component, function or facet may be completely verified, the number of all
possible interactions of constituent parts prevents a thorough analysis of the
full systems. The problem is further exacerbated whenever the environment
must be taken into consideration, since the real world is asynchronous and
hardly predictable.

In many practical cases, the existence of some problem, or bug if in a
software component, is demonstrated by the incorrect functioning of the sys-
tem. In theory, to conjecture the explanation of an incorrect behavior, one
might collect and analyze a set of distinct malfunctioning cases. In practice,
however, it may be difficult to pinpoint existing issues: there might be insuf-
ficient evidence to faithfully reproduce the scenario, or the triggering cause
may be so improbable that pure random simulation would never uncover the
fault again.

A paradigmatic example of complex computer systems connected with
the environment is represented by wireless sensor networks (WNSs). In par-

1The New Instrument of Sciences

2

ticular, the analysis of ad-hoc WSN’s routing protocols is extremely hard, as
protocol designers have little to nihil post-deployment information about the
occurrence and cause of malfunctions: “We frequently failed to understand
performance results and could not determine who was to blame (i.e., the
testbed characteristics, or the routing layer?)” [1]. WSN protocols which
performed well in controlled environments had as low as 2% data delivery
in the field [2, 3]. The observed network lifetimes were also sometimes in-
explicably lower than expected: “[the] network dies out: three weeks into
the deployment most sensor nodes ran out of batteries. We conjecture that
the difference is caused by overhearing less traffic, but [...] there must be
another factor contributing significantly to the nodes’ power consumption”
[4]. Yet, both scholars and practitioners openly admit their inability to repro-
duce faulty scenarios: “it is unclear why collection performs well in controlled
situations yet poorly in practice, even at low data rates” [5].

Such a lack of understanding is not surprising. The indoor WSN testbeds
used for testing (e.g., MoteLab [6]) form relatively well-connected networks,
unlikely to reproduce the type of extreme challenges encountered later in
environmental deployments. Furthermore, “experimental results obtained on
a single testbed are very difficult to generalize” [1]. Since worst-case scenarios
are statistically rare events in the state-space of the problem, non-exhaustive
methods, such as testbed analysis [7] or random testing [8], are likely to
miss them. On the other hand, using formal verification for analyzing such
protocols is computationally prohibitive, and has met with limited success in
the past [9, 10, 11, 12]. At best, it succeeds in identifying unsafe behavior of
a WSN protocol in a few concrete, small-size WSN topologies, which makes
it impossible to perform statistics and generalize the cause of the behavior.

This paper addresses the lack of experimental evidence when tackling life-
time anomalies in WSNs collection routing, by proposing a general method-
ology and presenting results for a complex real-world application from the
field of ad-hoc networking. We exploit an evolutionary algorithm (EA) to
generate a set of distinct, significant scenarios where the WSN is not be-
having correctly. The scenarios are initially generated randomly, and then
iteratively refined to potentially trigger critical situations. To let the algo-
rithm evaluate a possible scenario, it is only necessary to define quantitative
functions which roughly express “how interesting” that particular scenario
is. For example, in our case study, the EA evaluates (i) the overall network
radio traffic, and (ii) the maximum node-local radio traffic among all WSN
nodes. These two functions measure energy drain for all nodes, and the

3

highest energy drain at a single node, respectively, which are two of the basic
definitions for network lifetime used in the literature [13].

In the current contribution, we coupled the meta-heuristic optimization
technique and a WSN simulator for generating topologies with abnormally
high routing traffic. Then, we demonstrated how these data can be used to
discover the cause of the behavior. In more details, we experimented with
the collection tree protocol (CTP) and the multi-hop link quality indicator
protocol (MHLQI). For both protocols, we acquired a large set of samples
of anomalous WSN lifetime. Using such experimental evidence, we demon-
strated that it is possible to establish the cause of the misbehavior, and we
detected which features of the underlying physical topologies cause a particu-
lar protocol logic to trigger unusually high traffic (and thus low lifetime). We
call these features topological metrics. For each protocol, we first showed the
correlation between pairs of 〈fitness, topological metric〉 in the samples gener-
ated with the EA, then we tested the reverse, i.e., that topologies artificially
generated so that they maximize a given topological metric are sufficient
cause for the protocol to show high traffic.

At the time of writing, no attempt to perform a quantitative causality
analysis of worst-case lifetime in WSN routing protocols has been reported
in mainstream scientific literature. We find that this lack of knowledge in
the field of protocol analysis can be suitably remedied by the application
of an EA in a novel, practical methodology, which contributes to the set of
real-world applications of EA techniques, as called for in [14, 15].

We structure the paper as follows. In Section 2, we give background in-
formation on WSN collection routing protocols, evolutionary computation
and the specific EA used in the experience. Section 3 describes the method
to generate evidence for extreme lifetime in the system, and the method to
analyze the evidence and extract a topological correlation and cause. The
following three sections present experimental results for both protocols, from
obtaining the EA-driven samples of protocol behavior (Section 4), to writ-
ing empirical topological metrics and showing their correlation with high
network traffic (Section 5), to showing causality by reverse testing (Section
6). Finally, Section 7 draws the conclusions of our work and outlines future
developments.

4

2. Background

2.1. WSN Collection Routing

A WSN is a distributed, wirelessly networked, and self-organizing sys-
tem most often employed for distributed monitoring tasks. Powerful and
relatively inexpensive, they are widely adopted in many applications, rang-
ing from building surveillance to environmental monitoring [2, 3, 4]. In a
WSN, each node is a resource-constrained embedded system, and the physi-
cal topology of the wireless network typically exhibits heavy link dynamics.
Sensing nodes deployed at locations of interest sense, store and forward data
to one or more sink nodes for collection; in turn, a sink may also disseminate
commands back to the nodes.

For successful data collection and dissemination, a WSN often employs
an ad-hoc collection routing protocol. WSN routing protocols are usually
designed for datagram-based routing (i.e., they route each data packet inde-
pendently from any other packet), and are based on adaptive route selection
(i.e., they choose a route to forward a packet based on current network traffic
conditions, instead of statically). WSN collection routing aims at organiz-
ing the nodes, for data collection, into a multi-hop loop-free spanning-tree
logical topology rooted in sink nodes. Such protocols are distance-vector pro-
tocols which often implement an adaptiveness of the route selection with link
dynamics by continuously measuring the quality of a link in a link-quality
indicator (LQI), i.e., link costs estimated through link connectivity statis-
tics. This LQI estimation is done on the basis of broadcasted beacon packets
(used in all distance-vector protocols by nodes to announce to neighbor nodes
both their presence, and their total costs to reach a sink node). Typically,
a node broadcasts beacon packets at a fixed interval, and a routing table is
maintained by each node on the basis of neighbor information.

All distance-vector protocols are prone to routing loops, i.e., inconsisten-
cies in forming a routing tree. Protocols implement various correcting mech-
anisms for routing loops, such as dropping (instead of forwarding) packets
when loops are detected at a node, or speeding up the beaconing interval in a
bid to aid tree recovery. Thus, the performance of collection routing depends
on the logic implemented by the protocol, on node characteristics (such as
radio transmitting power), on the physical topology of the network, and on
environmental conditions.

Among the distance-vector collection routing mechanisms applied to wire-
less sensor networks, MHLQI and CTP are allegedly the most used protocols.

5

MHLQI is an early version of collection routing designed with periodic bea-
coning (at a fixed rate of 1 beacon per 30 seconds), and with packet dropping,
i.e., a node discards packets when it detects a loop, until a new next hop is
found at that node [16]. CTP is the current de-facto standard for WSN
collection routing: it builds on the concept of combining the basic distance-
vector, beacon-based mechanism with adaptive beacon intervals, designed to
broadcast beacons more often in order to reconstruct the routing tree when
the network is changing. Sink nodes have a cost of zero; a node’s cost is the
cost of its next hop plus the cost of their link [5]. Both MHLQI and CTP
have been deployed in battery-powered testbeds for environmental, medical
or infrastructure monitoring, e.g., [2, 17, 18].

2.2. Related performance evaluation studies

Existing performance studies of such ad-hoc protocols have quite low
coverage of the state-space of the protocol. For instance, Boukerche [7] sim-
ulates protocols on random topologies of 50 and 100 nodes, of which up to
30 packet-injecting nodes. The author empirically learns that two general
protocol features cause comparatively high traffic: the use of network-wide
flooding, and the use of periodic beacon packets. However, the influence of
topological metrics on overhead is not studied, nor is overhead quantified
through other than random testing.

In the area of applied model checking based on qualitative specifications
(i.e., distributed assertions and non-metric temporal logics), Mottola et al.
[10] apply formal verification on up to 30 nodes over a data dissemination
protocol – the dual of collection. They locate a small set of concrete topolo-
gies over which the protocol violates a distributed liveness property. In a
similar way, T-Check [9] locates node-local safety and liveness bugs, includ-
ing some over small static topologies running the CTP implementation in
TinyOS.

Regarding quantitative analysis, scholars already discovered few interest-
ing properties for WSN collection protocols. For instance, Puccinelli et al.
[8] find a protocol-independent metric that correlates with the protocol per-
formance factor. In their case, this performance factor is the ratio of data
delivery to the sink node, and the metric is the sum of packet reception rates
(gathered experimentally) over all shortest paths from every sensing node to
the sink; for this purpose, the shortest paths are calculated post-experiment
using Dijkstra’s algorithm. They limit the analysis to a small sample of
large-scale, well-connected physical topologies. Quite interestingly, such a

6

choice led them to overlook the worst-case scenarios that we found with our
methodology.

Concerning the creation of evidence, Baldi et al. presented a seminal
work on the use of an evolutionary algorithm for generating a critical test
case for an oversimplified TCP/IP network [19]. More recently, Begum et al.
proposed a semi-automatic method to generate worst-case data-throughput
scenarios for the IEEE 802.11 MAC protocol [20]. Their approach is based
on a search algorithm through the state-space of an abstract model in state-
machine syntax; this has the disadvantage that the modeling makes some
simplifying assumptions for some system features, e.g., the presence of a
global clock, and the lack of a capture effect. More importantly, the method
only generates worst-case scenarios for a small number of given reference
topologies, which (as also in the cases [9, 10] above) does not allow for a
generalization of the causes of the low performance in terms of network con-
text. Finally, the feasibility of coupling an evolutionary algorithm and a
WSN simulator for generating a set of critical network topologies was shown
[21]2.

2.3. Evolutionary Computation

Evolution is the biological theory that the origin of all living species is
caused by modifications occurring in successive generations. Natural evolu-
tion is not a random process: only changes that are beneficial to the individ-
uals are likely to spread into subsequent generations. It is based on random

2This contribution extendeds [21] and includes novel points:

• The scope of the study was broadened adding a second mainstream protocol (MH-
LQI)

• The maximum size of the networks was increased by five times.

• The set of relevant topological metrics for the energy behavior of both protocols
was extended by five times.

• A brand new experimental campaign was added.

• The analysis of correlations in the experimental data was extended.

• A causality link between certain topological features of a network and the energy
behavior of certain protocol features was experimentally demonstrated. This result
may be effectively used by network engineers in the process of evaluating a protocol
design.

7

variations, but some are rejected, while others are preserved on the basis
of the “fitness” they convey to the individual. Darwin called this principle
“natural selection”, a quite simple process where randomness “afford materi-
als” [22]. Strikingly, the process only requires to assess the effect of random
changes, not the ability to design intelligent modifications.

Evolutionary computation (EC) is the offshoot of computer science fo-
cusing on algorithms loosely inspired by the theory of evolution – the “evo-
lutionary algorithms” [23]. The definition is deliberately vague since the
boundaries of the field are not, and cannot be, sharply defined. EC is a
branch of computational intelligence, and it is also included into the broad
framework of bio-inspired heuristics. As noted before, EAs may provide an
effective methodology for trying random modifications where no preconceived
idea about the optimal solution is required.

Generate and
evaluate initial
set of solutions

Evaluate new
solutions

Stop
condition
reached?

Select parents and
create offspring

Remove worst
solutions

Return best
solution(s)

Yes

No

Figure 1: Flowchart of a generic Evolutionary Algorithm (EA). Parent selection is usually
stochastic, with the best candidate solutions having a higher probability to generate off-
spring. Removal of individuals is usually deterministic: the solutions are sorted by fitness
values, and the worst ones are deleted.

Most of the jargon of evolutionary computation mimics the precise termi-

8

nology of biology. In an EA, a single candidate solution is termed individual ;
the set of all candidate solutions that exist at a particular step of the algo-
rithm is called population. Evolution proceeds through discrete steps called
generations. In each of them, the population is first expanded and then
collapsed, mimicking the processes of breeding and struggling for survival
(Fig. 1)3.

The ability of an individual to solve the target problem is measured by the
fitness function, which influences the likelihood of a solution to propagate its
characteristics to the next generation. In some approaches individuals may
die of old age, while in other they remain in the population until replaced by
fitter ones.

The word genome denotes the whole genetic material of the organism,
although its actual implementation strongly differs from one approach to
another. The gene is the functional unit of inheritance, or, operatively,
the smallest fragment of the genome that may be modified in the evolution
process. Genes are positioned in the genome at specific positions called loci.
The alternative genes that may occur at a given locus are called alleles.

To generate the offspring, EAs implement both sexual and asexual re-
production. The former is named recombination; it involves two or more
participants, and implies the possibility for the offspring to inherit differ-
ent characteristics from different parents. When recombination is achieved
through an exchange of genetic material between the parents, it often takes
the name of crossover. Asexual reproduction may be named replication, to
indicate that a copy of an individual is created, or, more commonly, mu-
tation, to stress that the copy is not exact. All operators exploited during
reproduction can be cumulatively called evolutionary operators, or genetic
operators because they act at the genotypical level.

An EA outperforms a pure random approach and, at the same time,
is more robust than pure hill climbing and other local search mechanisms.
Considering their intuitive structure, EAs are quite simple to set up, and
require no human intervention when running. Finally, it’s easy to trade-off

3It should be noted that some evolutionary algorithms do not store a collection of
distinct individuals, but rather evolution is depicted through the variation of the statistical
parameters that describe the population, see e.g. the algorithms belonging to the class
of compact optimization [24], or the “Selfish Gene” algorithm [25, 26]. Other algorithms
mimic the evolution of competition between species [27] or cooperation between individuals
[28], for problems with specific characteristic [29, 30].

9

between computational resources and the quality of the results, simply by
defining a proper stop condition for the algorithm.

2.4. µGP

The EA used in the experiments is µGP, a general-purpose evolutionary
toolkit developed at Politecnico di Torino [31, 32]. µGP internally represents
an individual as a multi-graph, where each node roughly corresponds to a
locus of the genome. It is interesting to notice that, differently from most
EAs, loci can be occupied by alleles with different characteristics, e.g. integer,
float or fixed values, and the probability of appearance of each allele can be
tuned. This feature will be extensively used in the following.

In µGP, parameter µ indicates the size of the population; λ the number
of genetic operators applied at each step (controlling, indirectly, the offspring
size); τ the number of individuals in the tournament selection [33] used to se-
lect the parent individuals; and σ the initial strength of the genetic operators,
tweaking the similarity between parents and offspring.

An additional parameter, called inertia, controls the self-adapting mecha-
nisms. Self-adapting in EAs is used to slowly shift the focus of the algorithm
between exploration and exploitation, depending on the current and past
state of the population, improving efficiency and quality of the results [34].
In µGP, in particular, inertia regulates the activation probabilities of the
genetic operators, rewarding the most effective ones; and influences σ, usu-
ally reducing the difference between parent and offspring individuals during
exploitation.

µGP can use a great variety of genetic operators, depending on the specific
characteristics of the individuals’ genome. In the following experiments, 4
operators are used: a single-point crossover, a two-point crossover, and two
mutation operators. Their behavior, with specific reference to the case study,
is summarized in Figure 2 (see Section 3.1 for a detailed description of the
individual encoding and Table 4.1 for the µGP parameter setting).

3. Proposed methodology

We propose to exploit an EA to generate a set of distinct, significant sce-
narios where the WSN does not behave correctly. Such scenarios are initially
generated randomly, then iteratively refined (“evolved”) in the attempt of
worsening their behavior. Then, the scenarios are analyzed, and one or more

10

metric with high correlation with the network behavior are selected. Even-
tually, and hopefully, at this point some causal relation may be discovered
(Fig. 3).

As stated before, the meta-heuristic optimizer is not used to demonstrate
the incorrectness of the system, as some erroneous behavior has already been
recorded. Nor is it used to minimize the network performance and lifetime
in a single case. On the contrary, the EA affords materials for a system-
atic study, providing the researchers with a conspicuous set of significant
examples.

To generate the scenarios, the user is requested to provide one or more
qualitative fitness functions related to the target problem, i.e. a rough mea-
sure of the attractiveness of the facts. Such functions do not need to be
exact, since they are used as a mere proxy to direct exploration towards the
most interesting regions of the state-space of the system at hand.

It is also important to stress that, unlike most applications of evolution-
ary optimizers, in this study the final fitness value is not so relevant, while
it is of capital importance that generated scenarios are different one from
another: several examples of moderate malfunctioning are far more useful
in an analysis than a single disastrous case. Indeed, the generated set will
probably include spurious scenarios, but it will nevertheless provide a start-
ing point far more significant than random sampling, and far more tractable
than an exhaustive enumeration.

A conceptual scheme of the evolutionary system adopted to test the WSN
behavior is depicted in Fig. 4. For both MHLQI and CTP, we analyze the
corresponding implementation in TinyOS [35], the standard operating system
designed for WSN nodes. To give µGP an adequate degree of control upon
network topologies, we employ configurable TOSSIM [36] simulations of each
routing protocol, over a standard full-power data-link protocol. TOSSIM is
a real-code simulator, which enables us to analyze the complete software
implementation of the protocol, instead of having to remodel the protocol
logic into a different language—which is an error-prone task.

Aiming at creating examples of excessive power consumption, we adopt
two fitness functions (the overall network traffic and the maximum node-local
traffic among network nodes) as proxy for evaluating the attractiveness of
a scenario; these factors directly dictate network and node energy consump-
tion, and thus lifetime. In other words, we quantify energy consumption
for sensor nodes indirectly, and in a platform-independent manner: knowing
that radio transmission and reception have the highest battery current draw,

11

we estimate energy consumption by simply counting radio system calls at
each node (see Section 3.2).

As shown in Fig. 4, the evolutionary core of µGP is responsible for
creating candidate network configurations, while TOSSIM simulates each
and logs all radio system calls (i.e., transmissions and receptions of routing
protocol beacons and periodic data packets) generated on each node. These
logs are parsed to create an event hash map, which in turn is processed in
order to count the radio events raised by the nodes, and obtain the fitness
function.

For experimentation, for each evaluated topology we configure all nodes
to boot at simulation time 0. Node 0 is the sink in all experiments; at net-
work level, all nodes run either MHLQI or CTP collection routing, while
an application-level logic makes all nodes inject data packets in the network
periodically, at 5-second intervals. Every single simulation is allowed a simu-
lation runtime of 200 seconds, during which all radio system calls are logged
for post-processing and fitness evaluation; this simulation runtime is suffi-
ciently long to allow either protocol to build a logical routing tree (if one can
be built over the given physical topology).

In order to handle the overall randomness of simulations over a network
configuration (which then produces a noisy component of both MAX and
SUM fitness functions), for every topology evaluation in each of our experi-
ments we execute n = 16 simulations, and then average the value of the fitness
function obtained over these repetitions. This number of repetitions guar-
antees a 95% confidence interval of width σ, where σ denotes the standard
deviation of the fitness function over an n-dimensional sample of repeated
simulations.

3.1. Encoding of evolutionary individuals

For our purposes, an individual is a WSN topology represented as a di-
rected graph. A graph may have various encodings; we choose an N × N
matrix, with N the network size. Each position {i, j} in the matrix encodes
the signal gain from node i to j, and is measured in dB. Diagonal elements
(which model node self-connectivity) are not part of the encoding. We remark
that, given the directional asymmetry of wireless transmission, we encode
topologies as asymmetric matrices, to preserve generality. The long-term
asymmetry of communication links is motivated in, for example, [37], which
found that directional links “can result from factors such as heterogeneity of
receiver and transmitter hardware (leading to differing transmission ranges),

12

power control algorithms (in which nodes vary their transmission power based
on their current energy reserves), or topology control algorithms (aimed at
reducing interference in the network by computing the lowest transmit power
that each node needs to stay connected to the network).”

In TOSSIM, a viable directional link has a floating-point gain greater
than -110 dB. Besides gain, link qualities are affected by stochastic effects
(i.e., external radio-frequency noise, packet collision, and a capture effect
which allows only the strongest of two signals to be received). These effects
introduce a dynamic, noisy component difficult to filter out. These effects
are implemented in a TOSSIM simulation, both through an accurate model
of the CC2420 radio stack common to many hardware platforms, and by
adding a statistical noise model to the received signal strength—with this
noise model generated from a noise trace [38].

To bound the state-space of the individual encoding, we discretize the
problem. First, we only work with integer gain values, and further limit
their range by having:

1. strong links, encoded with a set of 30 equidistant values above -110 dB;
strong links are then superimposed with a low-noise trace which allows
a high signal-to-noise ratio;

2. weak links, or non-viable links, encoded with a single gain value below
-110 dB.

Thus, in the individual genome, each gene may present one of two alleles: a
weak link, represented by a fixed arbitrary constant, and a strong link, repre-
sented by an integer. The choices we make have two main consequences: on
one hand, the low-strength noise limits the statistical variation among simu-
lations of the same topology, raising the confidence level of the evolutionary
experiments; on the other, the individual’s encoding shapes the search space
so that an individual having a weak link in position {i, j} is close to an in-
dividual having a strong link in the same position, regardless of the link’s
gain. Eventually, this scheme helps the EA explore the search space more
effectively, allowing the mutation operators to either switch the allele for a
given gene, or fine tune the gain of a strong link4, see Figure 2.

4To obtain this effect, the mutation operators are implemented in such a way that
mutating a strong link creates a weak link in 50% of the offspring, regardless the original
gain value.

13

Second, we do a further discretization by only working with particular
network sizes, and also particular network densities, i.e., the percentages of
strong links out of the total number of possible network links. For examples,
for 50-node WSNs, we analyze networks densities of 1/16 (i.e., a low-density
configuration in which each node has on average just over 3 neighbors), 1/8
(a mid-density), and 1/4 (a high-density configuration where a node has on
average over 12 neighbors). In µGP, one can associate a user-defined occur-
rence probability to each allele: in this study, we use this feature to bias the
allele probabilities in the initial population, thus focusing each evolutionary
experiment on a specific network density.

3.2. Fitness functions

It is a well-known fact that the fitness function heavily affects the behavior
of an EA. In particular, an EA produces the best results when there exists a
gradual slope towards the best solutions. An almost completely flat (or, on
the contrary, an extremely rugged) fitness function is hard to optimize; on
the other hand, if one or more “peaks” of attraction are present in the fitness
landscape, an EA will naturally converge towards them.

Bearing in mind these considerations, it is then crucial to define a fitness
function characterized by a certain slope in its landscape. Following the
intuitive idea that the more a system is stressed, the more likely it is to exhibit
faults, we search for WSN configurations where the routing protocol causes
an abnormally high number of network radio events. Thus, we consider, in
independent experiments, the following objectives:

1. MAX, the maximum traffic count at a node, calculated as the maximum
number of node-local radio system calls (i.e., beacon and data-packet
reception and transmission) among all network nodes;

2. SUM, the total network traffic count, calculated as the added number
of node-local radio system calls for all nodes in the network.

Both fitnesses are calculated accurately, using added logging mechanisms into
the chip-level network driver implementation in TinyOS. By maximizing the
MAX fitness function, we aim at finding WSN topologies where at least one
node executes an abnormally high number of radio events, consuming more
energy and having diminished lifetime. By maximizing the SUM fitness, we
instead aim at finding WSN topologies where multiple nodes in the network
cause a traffic storm, which in turn will lead to higher energy consumption
and decreased lifetime for all nodes involved. Based on our experimental

14

Parameter Value

µ 40

λ 5

τ 2

σ 0.9

inertia 0.9

Operator Activation probability

Two-point crossover 0.25

One-point crossover 0.25

Single-parameter mutation 0.25

Replacement mutation 0.25

Table 1: Parameters for the EA, used in all the experiments. Note that the activation
probabilities for all operators and the value of σ, regulating the strength of the mutations,
are constantly modified by the self-adapting mechanism during the runs.

results (see Section 4), we can conclude that the landscape of these two fitness
functions has features which allow to discriminate between well-behaved and
high-traffic WSN topologies.

4. Gathering evidence from EA-driven simulation

4.1. Experimental results

Table 2 (for MHLQI) and Table 3 (for CTP) summarize the configurations
of all the experiments performed in this study. All the topologies generated
are available through a public repository5. Table 4.1 reports the parameters
used for the EA µGP. All experiments have been run on 6 Intel Xeon 2.40 GHz
cores, on a system with 8GB RAM, Ubuntu 12.04, and kernel 3.2.0-29 x86 64.
It should be noted that the wall clock time for each (repeated) simulation of a
given topology heavily depends on the protocol (through the number of radio
events it generates), on network size, and network density. Larger WSNs
combined with high fitnesses do require a longer wall clock time, and thus
allow for fewer evolutionary generations and evaluations per time unit: this
is intuitively explained by the added computation load needed to simulate,
log and process higher counts of radio events. As a consequence, since for the
evolutionary experiments we define the stop condition in terms of maximum
allowed runtime (24 ÷ 72 h), the number of individuals (and generations)
evaluated during each experiment is not fixed among experiments.

To provide a reference point for our results, for each experimental configu-
ration we measure through simulation the fitness values of simple, connected,
2D-grid “reference” topologies (a standard topology for basic testing of pro-
tocols in simulation). We consider grids of sizes 2×5, 4×5, 5×6, and 5×10,

5https://github.com/doinab/evo-network-verification.

15

respectively. In all these cases, the sink node is situated in a corner of the
grid. We make this choice due to the fact that, for these protocols, we experi-
mentally verified that topologies with sinks on the corners are the worst-cases
with respect to traffic, compared all other possible sink placements (such as
a centered sink node). We report the value of the fitness functions for such
reference grid topologies in column (A) of Tables 2-3. In column (B), we
show the highest fitnesses obtained by the EA for each configuration. Fi-
nally, column (C) shows for each configuration the results obtained with the
corresponding reverse testing, as explained in Section 6; the fitness here is
greyed if it is not higher than that obtained by the EA in column (B).

From Tables 2-3, it becomes clear that (i) MHLQI was not found to
exhibit anomalous traffic, while (ii) for all the CTP experiments using the
SUM fitness and some of the CTP experiments using the MAX fitness, the
best fitness value found by the EA is over an order of magnitude higher than
that of the standard, grid reference topology.

Fig. 5 illustrates the sequences of generations created by one MHLQI
experiment and two of the CTP experiments. Each generation is shown as
the minimum, average and maximum fitness of its individuals. It can be seen
that in all cases the evolutionary algorithm is able to constantly improve upon
the current solutions along subsequent generations. However, the algorithm
behavior (which, in turn, indicates some properties of the fitness landscape)
depends heavily on the protocol and the network density. In particular, the
difference in the amplitude of the improvement is very large between the
protocols: while for MHLQI the total number of network packets increases
roughly by 1000 over 250 generations, for CTP this improvement is almost
100 times as high. This provides evidence for a fitness landscape which is
extremely different, even for protocols of the same family.

Furthermore, in one case (CTP with network density: 1/2), the algorithm
shows a smooth fitness trend which gradually converges to the steady state
(as it is also clear looking at the fitness diversity, i.e. the min-max fitness
interval which progressively shrinks). In the other CTP experiment shown
(network density: 1/8), the fitness trend is instead characterized by abrupt
“evolutionary leaps” interspersed with phases where the fitness diversity is
low. These behaviors provide evidence for a more complex fitness landscape.

Similar evidence to the difference of fitness landscapes between protocols,
and the complexity of the fitness landscape for the CTP protocol can be
seen in Fig. 6, which shows the different outcomes in exploring topologies
between random and evolutionary experiments. For a given network size of

16

T
ab

le
2:

M
u

lt
iH

op
L

Q
I:

C
on

fi
gu

ra
ti

on
of

ex
p

er
im

en
ts

a
n

d
re

su
lt

s.
C

o
lu

m
n

(A
)

sh
ow

s
th

e
fi

tn
es

s
va

lu
es

fo
r

a
co

n
n

ec
te

d
g
ri

d
to

p
ol

og
y

w
h

ic
h

w
e

u
se

as
re

fe
re

n
ce

.
C

ol
u

m
n

(B
)

g
iv

es
th

e
re

su
lt

s
o
f

th
e

E
A

-d
ri

ve
n

ex
p

er
im

en
ts

;
w

e
d

en
o
te

b
y

(d
)

a
n

d
(c

)
(d

is
co

n
n

ec
te

d
or

co
n

n
ec

te
d

)
th

e
ty

p
e

o
f

to
p

to
p

o
lo

g
ie

s
o
b
ta

in
ed

.
C

o
lu

m
n

(C
)

is
o
b

ta
in

ed
th

ro
u

g
h

re
ve

rs
e

te
st

in
g
,

a
s

d
es

cr
ib

ed
in

S
ec

ti
on

6;
h

er
e,

th
e

fi
tn

es
s

is
gr

ey
ed

if
is

lo
w

er
th

a
n

in
co

lu
m

n
(B

).

M
u

lt
iH

o
p

L
Q

I

(A
)

R
e
fe

re
n

c
e

g
ri

d
to

p
o
lo

g
y

(B
)

E
v
o
lu

ti
o
n

a
ry

-d
ri

v
e
n

si
m

u
la

ti
o
n

(C
)

R
e
v
e
rs

e
te

st
in

g

F
it

n
e
ss

fu
n

c
ti

o
n

N
e
tw

o
rk

si
z
e

N
e
tw

o
rk

d
e
n

si
ty

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

R
u

n
ti

m
e

b
u

d
g
e
t

(d
a
y
s)

G
e
n

e
ra

ti
o
n

s
/

in
d

iv
id

u
a
ls

T
y
p

e
o
f

to
p

o
lo

-
g
ie

s

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

T
y
p

e
o
f

to
p

o
lo

-
g
ie

s

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

M
A

X
:

M
a
x
im

u
m

tr
a
ffi

c
c
o
u

n
t

a
t

a
n

o
d

e

10
1/

4
0
.4

5
1

8
7
7

/
5
2
1
2

(d
)

1
.0

7
(d

)
0
.8

2

1/
2

1
9
3
0

/
5
1
6
6

(d
,c

)
1
.1

7
(d

)
0
.9

4

20
1/

4
0
.6

9
1

4
6
9

/
2
6
2
7

(d
)

1
.1

5
(d

)
1
.1

1

1/
2

1
4
3
0

/
2
5
5
9

(c
)

1
.2

5
(d

)
1
.0

9

30

1/
8

1
.0

0

2
3
3
9

/
1
9
3
7

(d
)

1
.0

0
(d

)
1
.0

1

1/
4

2
3
1
6

/
1
8
8
5

(d
)

1
.2

8
(d

)
1
.1

3

1/
2

2
2
8
8

/
1
8
4
1

(c
)

1
.3

7
(d

)
1
.2

4

50

1/
16

1
.0

4

3
5
1
6

/
3
2
2
7

(d
)

0
.9

4
(d

)
1
.0

4

1/
8

3
5
4
2

/
3
1
0
3

(d
)

1
.1

5
(d

)
1
.1

8

1/
4

3
4
9
6

/
3
0
2
2

(c
,d

)
1
.3

3
(d

)
1
.2

6

S
U

M
:

T
o
ta

l
n

e
tw

o
rk

tr
a
ffi

c
c
o
u

n
t

10
1/

4
2
.0

5
1

8
9
4

/
5
1
5
9

(d
)

3
.6

2
(d

)
2
.3

8

1/
2

1
4
7
4

/
2
7
0
3

(d
,c

)
3
.1

9
(d

)
2
.7

4

20
1/

4
4
.8

3
1

2
3
9

/
1
4
1
0

(d
)

5
.8

9
(d

)
5
.4

2

1/
2

1
4
1
9

/
2
5
2
5

(d
,c

)
6
.9

4
(d

)
5
.8

7

30

1/
8

9
.6

5

2
2
9
4

/
1
9
3
6

(d
)

8
.5

1
(d

)
7
.5

0

1/
4

2
1
6
3

/
1
8
3
1

(d
)

9
.1

8
(d

)
8
.6

5

1/
2

2
1
4
8

/
1
8
2
7

(c
)

1
0
.5

8
(d

)
9
.6

1

50

1/
16

1
6
.0

8

3
4
9
4

/
3
2
0
8

(d
)

1
2
.6

8
(d

)
1
2
.6

4

1/
8

3
4
9
0

/
3
1
0
2

(d
)

1
4
.5

3
(d

)
1
3
.8

6

1/
4

3
4
9
4

/
2
9
1
2

(d
,c

)
1
6
.4

9
(d

)
1
5
.5

9

17

T
ab

le
3:

C
T

P
:

C
on

fi
gu

ra
ti

on
of

ex
p

er
im

en
ts

an
d

re
su

lt
s.

C
o
lu

m
n

(A
)

sh
ow

s
th

e
fi

tn
es

s
va

lu
es

fo
r

a
co

n
n

ec
te

d
g
ri

d
to

p
o
lo

g
y

w
h

ic
h

w
e

u
se

as
re

fe
re

n
ce

.
C

ol
u

m
n

(B
)

gi
ve

s
th

e
re

su
lt

s
o
f

th
e

E
A

-d
ri

ve
n

ex
p

er
im

en
ts

;
w

e
d

en
o
te

b
y

(d
)

a
n

d
(c

)
(d

is
co

n
n

ec
te

d
or

co
n

n
ec

te
d

)
th

e
ty

p
e

of
to

p
to

p
ol

og
ie

s
ob

ta
in

ed
.

C
o
lu

m
n

(C
)

is
o
b

ta
in

ed
th

ro
u

g
h

re
ve

rs
e

te
st

in
g
,

a
s

d
es

cr
ib

ed
in

S
ec

ti
o
n

6
;

h
er

e,
th

e
fi

tn
es

s
is

gr
ey

ed
if

is
lo

w
er

th
an

in
co

lu
m

n
(B

).

C
o
ll

e
c
ti

o
n

T
re

e
P

ro
to

c
o
l

(A
)

R
e
fe

re
n

c
e

g
ri

d
to

p
o
lo

g
y

(B
)

E
v
o
lu

ti
o
n

a
ry

-d
ri

v
e
n

si
m

u
la

ti
o
n

(C
)

R
e
v
e
rs

e
te

st
in

g

F
it

n
e
ss

fu
n

c
ti

o
n

N
e
tw

o
rk

si
z
e

N
e
tw

o
rk

d
e
n

si
ty

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

R
u

n
ti

m
e

b
u

d
g
e
t

(d
a
y
s)

G
e
n

e
ra

ti
o
n

s
/

in
d

iv
id

u
a
ls

T
y
p

e
o
f

to
p

o
lo

-
g
ie

s

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

T
y
p

e
o
f

to
p

o
lo

-
g
ie

s

B
e
st

fi
tn

e
ss

(x
1
0
0
0
)

M
A

X
:

M
a
x
im

u
m

tr
a
ffi

c
c
o
u

n
t

a
t

a
n

o
d

e

10
1/

4
0
.7

1
4
5
5

/
2
4
3
7

(d
)

1
9
.1

(d
)

1
3
.5

1/
2

1
3
8
1

/
2
2
8
0

(d
)

1
3
.8

(d
)

1
3
.3

20
1/

4
1
.3

1
2
0
3

/
1
0
9
8

(d
)

1
3
.9

(d
)

1
5
.5

1/
2

1
2
2
8

/
1
4
3
3

(d
)

1
1
.3

(d
)

1
3
.7

30

1/
8

2
.0

2
3
6
9

/
2
2
6
2

(d
)

1
6
.7

(d
)

1
5
.6

1/
4

2
2
2
1

/
1
4
2
4

(d
)

1
4
.2

(d
)

1
6
.9

1/
2

2
3
0
8

/
1
9
3
8

(c
)

7
.2

(d
)

1
3
.1

50

1/
16

3
.2

3
4
5
6

/
2
9
0
6

(d
)

1
6
.1

(d
)

1
5
.4

1/
8

3
2
8
8

/
1
8
2
2

(d
)

1
3
.8

(d
)

1
3
.9

1/
4

3
1
5
7

/
9
4
6

(d
)

1
0
.5

(d
)

1
3
.9

S
U

M
:

T
o
ta

l
n

e
tw

o
rk

tr
a
ffi

c
c
o
u

n
t

10
1/

4
2
.8

1
2
2
5

/
1
2
6
2

(d
)

7
1
.3

(d
)

1
1
4
.5

1/
2

1
1
4
9

/
1
0
1
3

(d
)

1
0
5
.1

(d
)

9
7
.6

20
1/

4
8
.0

1
1
9
8

/
1
1
4
5

(d
)

1
2
3
.2

(d
)

2
5
4
.6

1/
2

1
2
2
0

/
1
4
6
6

(d
)

9
8
.6

(d
)

1
6
4
.2

30

1/
8

1
4
.8

2
3
0
9

/
1
8
0
2

(d
)

1
9
3
.2

(d
)

3
7
0
.5

1/
4

2
2
2
8

/
1
4
5
7

(d
)

1
7
7
.8

(d
)

3
7
0
.2

1/
2

2
2
6
3

/
1
7
2
6

(c
)

1
6
2
.5

(d
)

2
2
4
.0

50

1/
16

3
3
.4

3
4
0
7

/
2
7
1
2

(d
)

2
1
5
.9

(d
)

6
3
3
.6

1/
8

3
2
5
8

/
1
5
2
8

(d
)

2
3
9
.1

(d
)

5
9
3
.2

1/
4

3
1
3
5

/
8
7
3

(d
)

3
1
2
.7

(d
)

4
3
5
.0

18

20 nodes and two network densities (1/2 and 1/4), the figure shows, for each
protocol (i) the values of the SUM fitness function for 100 randomly sampled
topologies, each evaluated over 16 simulations (as also for the EA-driven
experimentation), and (ii) the fitness values for the top 100 unique individuals
resulted from our EA experiments. Here, we call a topology “unique” in a
set if its directional graph is distinct (disregarding the concrete gain value of
a strong link) from all others in the set.

On one hand, MHLQI evolutionary experiments never improve signif-
icantly over random experiments. On the other, for the particular CTP
experimental configuration (network size: 20, network density: 1/2, fitness:
MAX) in Fig. 6, the random tests exhibit a seemingly homogeneous field
of consistent low fitness values, while the counterpart evolutionary experi-
ment reaches solutions with higher fitness values, and delivers a large set of
intermediate solutions of close-to-top fitness. Such WSN configurations are
exactly the cases for which random testing is never an effective means for
analyzing worst-case protocol behavior.

4.2. Guidelines on EA-driven simulation

In order for WSN practitioners and scientists to reproduce our results and
fruitfully use our methodology, a few details of the EA configuration should
be borne in mind, namely:

1. Computational budget : defining an optimal runtime for an EA applied
to a given verification problem is not a straightforward task. There are
several possible stop conditions for an EA, each one offering a trade-off
in terms of computational time versus quality of the final result. In our
experiments, we assigned a time slot to each experiment. Another pos-
sible stop condition is stagnation (or steady state): if the best individual
in the population does not change over a given number of generations,
the execution is terminated. A third possible stop criterion is reaching
a user-specified value in the fitness of the best individual: for exam-
ple, if domain knowledge of the problem allows an expert to state a
threshold value that highlights a possible fault, the algorithm can be
configured to stop once such a fitness value is reached. However, the
definition of this threshold for the CTP validation task is impracticable
and can only be defined a posteriori.

2. Local optima: one problem which may affect the validity of our ap-
proach is the presence of local optima in the fitness landscape. This is

19

a serious and well-studied issue for all optimization techniques. Com-
pared to most classic local search methods, such as the Rosenbrock
algorithm [39] or the Hooke-Jeeves pattern search [40], whose perfor-
mance heavily depends on the initial solution (and convergence guaran-
teed, within some conditions, only towards the closest local optimum),
EAs are however more resistant to the attractiveness of local optima:
first of all, because of the stochastic element underneath their pro-
cess; secondly, because they are population-based, and thus sample in
a single generation multiple points in the search space. This parallel,
scattered sampling of the search space is likely to prevent the algorithm
from being trapped into local optima, and helps it converge towards
the global one. However, due to the complexity of the search space, the
top solutions obtained are not guaranteed to be the global optimum.

3. Repeatability : the experiments we reported here are repeatable, al-
though with some limitations. In particular, the sequence of the stochas-
tic operations performed by µGP can be replicated exactly by setting
the random number generator’s seed in the initialization phase of the
algorithm. On the other hand, the remaining stochasticity due to the
randomness of the internal logic of CTP and TOSSIM’s communication
model is difficult to control; to overcome this, it is advisable to simply
run multiple simulations for each topology.

5. Inferring quantitative correlations

The sets of top solutions obtained with EA-driven experimentation (Sec-
tion 4) allow us to conjecture convincingly a set of topological factors which
correlate with extreme traffic under collection routing.

To achieve this, we first collected a set of topological features which were
hypothetically noted in the literature as likely to have caused a problem
with a real-world deployment [4, 5]. This set consisted of graph metrics mea-
suring both the overall connectivity of the topology, and the average and
maximum node connectivity, for both the directed graph and its translations
into undirected graphs. To this set, we added novel topological metrics writ-
ten particularly for CTP; these metrics were empirically motivated by the
topological features of the top individuals found by the EA for CTP. We
then computed, for all samples of unique top individuals obtained as evi-
dence with the EA, the correlations between the value of the fitness function
and the value of all the topological metrics in our list. For each protocol,

20

we report here the topological metrics which showed highest correlation. As
intuitive from the large difference in fitness found by the EA between CTP
and MHLQI (Tables 2 and 3), the sets of topological metrics we found to
correlate best with high fitness for the two protocols are also different.

In this section, we first motivate empirically the novel topological metrics
we defined for CTP, then formally define our best metrics, and finally give
the quantitative correlations obtained.

5.1. CTP: Empirical motivation for topological metrics

As intuitive motivation for the new topological metrics we found for CTP,
we describe in more detail some of the top individuals found experimentally.
Figures 7 and 8 show the top evolutionary individuals resulted from the (net-
work size: 20, network density: 1/4, fitness: SUM), and (network size: 20,
network density: 1/2, fitness: SUM) experiments, respectively, together with
histograms of counts of radio events per node (as resulted from a single simu-
lation). The original, directed, topology is translated here into an undirected
graph for clarity; the formal translation for this is given later in Section 5.2.
As a note, all nodes in these topologies which are not reachable from the
sink node via undirected edges are instead only reachable from the sink via
directed edges (not drawn).

From these top individuals given as example, it becomes empirically clear
that traffic storms are experienced exactly by nodes located in components
disconnected from the sink (i.e., components without viable bidirectional
paths to the sink), and particularly by those nodes in undirected cycles.
Furthermore, rather unexpectedly, a single node in a disconnected cycle will
experience a comparatively higher traffic count when the cycle is compara-
tively smaller.

In order to locate what feature of CTP causes this behavior, we contrast
here the composition of the total network traffic (i.e., captured by the SUM
fitness function) between the 20-node reference grid topology (with fitness
value 8,000) and the 20-node top individual from Fig. 7 (with fitness value
123,000). Comparatively, while both have roughly the same network density
and inject the same 800 data packets into the network, the reference topol-
ogy executes only 1,500 beacon transmission and reception events and 6,500
events for data packets. The numbers are 25,000 and 98,000, respectively,
for the top individual from Fig. 7. Thus, the ratio of data packets injected
to beacon packets rises from 1:2 to over 1:30, and similarly for forwarded
packets.

21

This indicates that the adaptive beaconing mechanism in CTP, which
triggers beacon updates in order to resolve apparent routing loops, fails to
detect (and adapt to) those situations when no bidirectional tree can be
constructed in the network. This behavior is independent of the network
density, and we found it also correlates with another performance factor of
collection routing (which is out of the scope of this contribution), i.e., the
ratio of data delivery to the sink.

We now formalize our relevant topological metrics, including those mea-
suring disconnection and the presence and number of cycles in a topology.

5.2. Definitions and notation

A WSN topology is represented as a digraph G = (V,E) without self-
loops, where vertex 0 ∈ V represents the sink node of the collection tree.
Given a digraph G, we define the corresponding undirected graph U(G) =
(V, U(E)) so that for any i ∈ V and j ∈ V , we have (i, j) ∈ U(E) iff
both (i, j) ∈ E and (j, i) ∈ E. I.e., an edge is preserved in U(G) if both
corresponding edges of reciprocal directions are present in G. We denote the
number of undirected edges in U(G) by |U(E)|.

As usual, for both digraphs and undirected graphs, if a path 〈u, ..., v〉
exists between two vertices u and v, then v is said to be reachable from u.
In particular, we say that a vertex v is sink-reachable in the digraph G if v
is reachable from vertex 0; the reverse reachability need not hold in G.

The degree of a vertex in the undirected graph is the number of edges
incident on it; we denote by deg(U(G))max the maximum degree among nodes
in U(G). The connected components of U(G) are the equivalence classes
under the reachability relation: all vertices in a connected component are
mutually reachable. An undirected graph is said to be connected if it has
exactly one connected component. Otherwise, the graph is disconnected [41].
We call by sinkless component a connected component C = (VC , EC) of U(G)
such that 0 6∈ VC .

In the undirected graph U(G), a path 〈v1, v2, ..., vk〉 forms a cycle if k ≥ 3
and v0 = vk. A cycle is called basic if the vertices v1, v2, ..., vk−1 are all
distinct. The cycle basis of U(G) is the set of basic cycles in the graph; any
given cycle in the graph can thus be written as a union of cycles in the cycle
basis. The closure of the cycle basis is the largest union of basic cycles.

Definition 1. (SU-component) Given a directed graph G, a connected
component C = (VC , EC) of the corresponding undirected graph U(G) is

22

called a sinkless undirected component (SU-component) if (1) it is sinkless,
and (2) any vertex v ∈ VC is sink-reachable in G.

Such a sinkless, but sink-reachable undirected component is essentially a
connected subgraph of G in which any vertex is reachable from (but cannot
itself reach) the sink 0.

Definition 2. (DD) For a digraph G, the degree of disconnection (DD) is
the total number of vertices in SU-components.

Definition 3. (SU-cycle) Given a directed graph G, a cycle 〈v1, v2, ..., vk〉
of the corresponding undirected graph U(G) is called a sinkless undirected
cycle (SU-cycle) if vi 6= 0,∀i = 1..k (i.e., 0 is not part of the cycle).

Notation 1. (NSUC) For a digraph G, we denote by NSUC the total
number of vertices on only those SU-cycles which are contained in SU-
components. These vertices are reachable from the sink, but cannot them-
selves reach the sink.

Notation 2. (CSUC) We denote by CSUC the number of components con-
taining at least one SU-cycle.

5.3. Correlation coefficients fitness-metrics

We calculate quantitative correlations between the occurrence of high
traffic counts and metrics from our set of topological metrics. In Tables 4
(for MHLQI) and 5 (for CTP), we report the strongest correlations we found
for the two protocols, for all sets of individuals resulted from the various
EA-driven experiments. When a particular EA experiment did not yield at
least 100 unique topologies of an appropriate type to compute correlations
with a particular metric, we mark r with “–”; this occurs, e.g., when too few
disconnected topologies were generated for a correlation with the degree of
disconnection, DD, and also other metrics pertaining to disconnected topolo-
gies. Similarly, we mark r with “–” if the sample does not exhibit sufficient
variation in the values of the relevant metric.

These best correlations that we found support the difference found in top
fitnesses by the EA-driven experiments. MHLQI shows positive, but weak
correlations with those topological metrics which are often expected to have
an influence on network traffic; for the SUM fitness, these metrics are the
density of the undirected topology |U(E)|, i.e., the percentage of network
links which are bidirectionally strong, and also the degree of disconnection

23

Table 4: MHLQI: correlation coefficients r, fitness vs. topological metrics, for the top
unique individuals resulted from the EA-driven experiments. When no appropriate sample
is available for a calculation, r is marked as “–”.

(MHLQI) SUM vs.: (MHLQI) MAX vs.:

Size Density DD |U(E)| DD deg(U(G))max

10
1/4 0.71 0.50 0.85 0.71

1/2 0.71 0.02 0.68 0.20

20
1/4 0.64 0.46 0.55 0.53

1/2 – 0.69 – –

30

1/8 0.86 0.83 0.69 0.78

1/4 0.65 0.41 0.70 0.72

1/2 – 0.74 – 0.68

50

1/16 0.72 0.77 0.85 0.76

1/8 0.39 0.75 0.29 0.60

1/4 – 0.87 0.64 0.43

Table 5: CTP: correlation coefficients r, fitness vs. topological metrics, for the top unique
individuals resulted from the EA-driven experiments. When no appropriate sample is
available for a calculation, r is marked as “–”.

(CTP) SUM vs.: (CTP) MAX vs.:

Size Density CSUC NSUC CSUC

10
1/4 0.94 0.94 0.92

1/2 0.97 0.91 0.95

20
1/4 0.95 0.91 0.82

1/2 0.99 0.99 0.73

30

1/8 0.95 0.97 0.97

1/4 0.94 0.91 0.90

1/2 – – –

50

1/16 – – –

1/8 0.95 0.93 0.86

1/4 0.75 0.76 0.75

24

DD; both DD and the maximum degree of a node correlate with the MAX
fitness.

For CTP, we found not only that the best correlations are with NSUC and
CSUC (i.e., the number of nodes in SU-cycles, and the number of components
containing such cycles), but also that these correlations are very strong. The
more disconnected components containing SU-cycles exist in the topology,
the higher the MAX fitness of that topology; this is intuitively motivated
by the top individual in Fig. 7, where the nodes in the top buckets of the
histogram (which form small cycles of sizes 3 and 5) have much higher traffic
counts than any of the nodes in Fig. 8 (which form a single, large closure of
the cycle basis).

6. Establishing causal relationship

Given the set of topological metrics with best correlations to the two
fitness functions (described in Section 5), we aim to verify that, for both
protocols, the metrics are a sufficient cause of high fitness. This is particularly
important for the case of CTP, where both fitness functions were found by the
EA to reach values an order of magnitude higher than the reference topology,
and establishing a sufficient cause of this occurrence is crucial.

For this, we designed additional experiments in which we automatically
generated, for every tuple (network size, network density, fitness function)
in our experimental configuration, 100 random test topologies each. These
topologies are generated so that they maximize, as much as possible, the
topological metrics relevant for that configuration; for example, in the case
of CTP, we try to reach high values for both NSUC (whose maximum value
is network size -1), and CSUC. For CTP, we used the empirical generation
algorithm in Fig. 9. For MHLQI, the generation algorithm is simpler: random
graphs are constructed, so that no node can reach the sink, one node has the
maximum node degree possible, all edges are bidirectional, and all other
edges randomly generated up to the required density.

Tables 2 (for MHLQI) and 3 (for CTP) in Section 4 also present, in col-
umn (C), the top fitnesses found through these reverse tests. For MHLQI,
this small amount of reverse testing reached high values for the fitness func-
tions, but did not surpass the EA-driven simulation. On the other hand, for
CTP, they show that (i) for all the experimental configurations, the reverse
testing confirms the results of the evolutionary-driven simulation, and (ii) in
15 out of 20 experiments, the results of the EA-driven tests are surpassed

25

by nearly 200%, as in the case of (network size: 50, network density: 1/16,
fitness: SUM). This great increase occurs for the most “difficult” configura-
tions, i.e., those configurations where the fitness landscape is intuitively more
complex: experiments pertaining to the SUM fitness function, and large net-
work sizes. We note that this increase in SUM fitness occurred across all
network densities. Finally, we try to generalize the behavior of CTP among
the various densities analyzed for a given network size. For this, we show
in Fig. 12 the amount of traffic experienced by both all reverse-generated
topologies (in red) and all EA-generated ones, plotted against one of the two
relevant topological metrics, NSUC; this shows, qualitatively, the strong cor-
relation between the two across both densities 1/2 and 1/4, with the lowest
density showing the highest traffic, and the ability of the reverse testing to
generate high-traffic network configurations.

To summarize the large proportion of traffic increase found for CTP,
Fig. 13 depicts the ratios between the highest MAX and SUM fitness value
found (by either the EA or the reverse testing) and the respective fitness
values for the reference topology, across all network sizes and densities. While
for MAX, this ratio is under 10 in most of the 10 experimental configurations,
a minimum of 10-fold increase in traffic is found for SUM.

To further contrast the top topologies obtained through reverse testing
with those obtained with the EA, Figures 10 and 11 present the top CTP
topologies from reverse testing resulted from the (network size: 20, network
density: 1/4, fitness: SUM), and (network size: 20, network density: 1/2,
fitness: SUM) experiments, respectively, together with histograms of counts
of radio events per node (as resulted from a single simulation). These should
be contrasted with Figures 7 and 8 obtained originally with the EA-driven
experiments. For both densities, the fitness value was nearly doubled through
reverse testing using our topology-generation algorithm, with both higher
traffic counts for single nodes, and higher number of nodes experiencing high
traffic. (It is to note that these new top fitness values obtained may increase
further through longer reverse-testing experiments.)

The results from reverse testing confirm that, after having discovered
topological causes for high fitness in a particular protocol using EA-driven
simulations, it is sufficient to evaluate the particular protocol with this type
of efficient reverse random testing.

26

7. Conclusions

In this paper, we have presented a novel and practical Evolutionary
methodology for analyzing worst-cases scenarios of WSN routing protocols.
We collected a large set of evolutionarily generated network topologies, from
which we deduced heuristic topological metrics correlated with the most
problematic cases. In summary:

1. We set up an evolutionary-driven simulation tool chain coupling the
standard WSN simulator TOSSIM with an EA. This tool chain “evolves”
generations of WSN topologies aiming at maximizing two relevant fit-
ness functions. We ran extensive evolutionary experiments and ob-
tained large samples of topologies (of up to 50 nodes and various net-
work densities) over which the protocol logic triggers high fitness values,
i.e., high traffic;

2. We empirically extracted predictive topological metrics that were shown
to correlate with high fitness values in the samples above, and sepa-
rately verified that the metrics are also a sufficient cause of high fitness.
These metrics make our approach quantitative, thus comparatively dis-
tinct from qualitative methods which develop a model of the WSN be-
havior by analyzing the actual software implementation of the routing
protocol, see [9, 10].

Here, we focused our analysis on two well-known WSN routing proto-
cols, namely MHLQI and CTP. Although the two protocols belong to the
same family, they exhibit extremely different worst-case lifetime. Taking as
“reference” point, for both protocols, the amount of traffic triggered over a
standard grid topology, we observed that (i) MHLQI, the more simplistic of
the protocols, is well-behaved, i.e., does not significantly exceed the reference
amount of traffic, while (ii) CTP, the newer and “smarter” protocol, exhibits
worst-case traffic one order of magnitude higher than the reference.

In addition to that, we showed that for MHLQI modestly higher traffic is
caused by topological metrics which are intuitive and expected, e.g., higher
network density and higher node degrees. On the other hand, for CTP, ex-
tremely high traffic is caused, less intuitively, by the existence (and number)
of physical loops in the network. Finally, we proved that random topologies
generated so that they maximize exactly these topological metrics can be
used efficiently as worst-case test scenarios by protocol designers.

27

Future works. The piece of research shown here paves the way to a number
of extensions. In our future studies, we will focus our research on various
aspects—both methodological and practical—concerning the proposed EA-
driven simulation framework and its applications:

1. Further analysis of Wireless Sensor Networks : both our methodology
for evolutionary-driven simulation, and the resulting worst-case test
generation method, are applicable to other WSN routing protocols and
other fitness functions. In our further research, we will show the ap-
plicability of this approach to other routing protocols, different fitness
functions (e.g., the ratio of data delivery to sink) and networks with
dynamic composition.

2. Extension of the evolutionary framework : another possibility to explore
will be the application of a domain-specific local search within the
evolutionary framework. Incorporating prior domain knowledge into
the meta-heuristic, the resulting memetic algorithm will likely generate
comparatively more interesting scenarios.

3. Applications beyond WSN : although we focused here on the specific
problem of generating misbehaving WSN topologies, the proposed EA-
driven methodology is applicable to different contexts. In principle, for
every optimization problem where a large search space co-exists with
the possibility of taking advantage of human expertise, an EA could
be effectively used to explore the most interesting areas, obtaining a
large set of significant samples that could be later exploited to uncover
hidden laws, or derive heuristic considerations on the system under
test.

Acknowledgements

INCAS3 is co-funded by the Province of Drenthe, the Municipality of
Assen, the European Fund for Regional Development and the Ministry of
Economic Affairs, Peaks in the Delta.

References

[1] K. Langendoen, Apples, oranges, and testbeds, in: In Proc. IEEE
International Conference on Mobile Adhoc and Sensor Systems (MASS
’06), pp. 387–396.

28

[2] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, M. Welsh, Fidelity
and yield in a volcano monitoring sensor network, in: Proceedings of
the 7th symposium on Operating systems design and implementation,
OSDI ’06, USENIX Association, 2006, pp. 381–396.

[3] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, D. Moore, Envi-
ronmental wireless sensor networks, Proceedings of the IEEE 98 (2010)
1903 –1917.

[4] K. Langendoen, A. Baggio, O. Visser, Murphy loves potatoes: experi-
ences from a pilot sensor network deployment in precision agriculture,
in: Proceedings of the 20th international conference on Parallel and dis-
tributed processing, IPDPS’06, IEEE Computer Society, Washington,
DC, USA, 2006, pp. 174–174.

[5] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Collection tree
protocol, in: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’09, ACM, New York, NY, USA,
2009, pp. 1–14.

[6] G. Werner-Allen, P. Swieskowski, M. Welsh, MoteLab: a wireless sensor
network testbed, in: Proceedings of the 4th international symposium
on Information processing in sensor networks, IPSN ’05, IEEE Press,
Piscataway, NJ, USA, 2005.

[7] A. Boukerche, Performance evaluation of routing protocols for ad hoc
wireless networks, Mob. Netw. Appl. 9 (2004) 333–342.

[8] D. Puccinelli, O. Gnawali, S. Yoon, S. Santini, U. Colesanti, S. Gior-
dano, L. Guibas, The impact of network topology on collection perfor-
mance, in: Proc. 8th European Conference on Wireless Sensor Networks
(EWSN), pp. 17–32.

[9] P. Li, J. Regehr, T-Check: Bug finding for sensor networks, in: Proc. 9th
International Conference on Information Processing in Sensor Networks
(IPSN), ACM, 2010, pp. 174–185.

[10] L. Mottola, T. Voigt, F. Österlind, J. Eriksson, L. Baresi, C. Ghezzi,
Anquiro: Enabling efficient static verification of sensor network soft-
ware, in: Proc. Workshop on Software Engineering for Sensor Network
Applications (SESENA) ICSE(2).

29

[11] M. Zheng, J. Sun, Y. Liu, J. Dong, Y. Gu, Towards a model checker
for nesc and wireless sensor networks, in: S. Qin, Z. Qiu (Eds.), Formal
Methods and Software Engineering, volume 6991 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2011, pp. 372–387.

[12] D. Bucur, M. Kwiatkowska, On software verification for sensor nodes,
Journal of Systems and Software 84 (2011) 1693 – 1707.

[13] I. Dietrich, F. Dressler, On the lifetime of wireless sensor networks,
ACM Trans. Sen. Netw. 5 (2009) 5:1–5:39.

[14] Z. Michalewicz, Quo vadis, evolutionary computation?: on a grow-
ing gap between theory and practice, in: Proceedings of the 2012
World Congress conference on Advances in Computational Intelligence,
WCCI’12, Springer-Verlag, 2012, pp. 98–121.

[15] Z. Michalewicz, Some thoughts on a gap between theory and practice of
evolutionary algorithms, IEEE Congress on Evolutionary Computation,
2012. Invited lecture, http://education.ieee-cis.org/lectures/
Invited-Lectures/Some-thoughts-on-a-gap-between-theory-

and-practice-of-evolutionary-algorithms.

[16] The MultiHopLQI collection protocol, 2007. www.tinyos.net/

tinyos-2.x/tos/lib/net/lqi.

[17] J. Ko, T. Gao, A. Terzis, Empirical study of a medical sensor applica-
tion in an urban emergency department, in: Proceedings of the Fourth
International Conference on Body Area Networks, BodyNets ’09, ICST,
Brussels, Belgium, Belgium, pp. 10:1–10:8.

[18] O. Chipara, C. Lu, T. C. Bailey, G.-C. Roman, Reliable clinical monitor-
ing using wireless sensor networks: experiences in a step-down hospital
unit, in: Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’10, ACM, New York, NY, USA, 2010,
pp. 155–168.

[19] M. Baldi, F. Corno, M. Rebaudengo, G. Squillero, GA-based perfor-
mance analysis of network protocols, in: Proc. Ninth IEEE International
Conference on Tools with Artificial Intelligence, 1997, pp. 118–124.

30

[20] S. Begum, A. Helmy, S. Gupta, Modeling and test generation for worst-
case performance evaluation of mac protocols for wireless ad hoc net-
works, in: IEEE International Symposium on Modeling, Analysis Simu-
lation of Computer and Telecommunication Systems (MASCOTS), pp.
1–10.

[21] D. Bucur, G. Iacca, G. Squillero, A. Tonda, An Evolutionary Frame-
work for Routing Protocol Analysis in Wireless Sensor Networks,
in: EvoStar/EvoApplications/EvoCOMNET: 15th European Confer-
ence on the Applications of Evolutionary and bio-inspired Computation,
Springer-Verlag, 2013.

[22] C. Darwin, On the Origin of the Species by Means of Natural Selection:
Or, The Preservation of Favoured Races in the Struggle for Life, John
Murray, 1859.

[23] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Natural
Computing Series, Springer, 2003.

[24] F. Neri, G. Iacca, E. Mininno, Compact optimization, in: Handbook of
Optimization, Springer Berlin Heidelberg, 2013, pp. 337–364.

[25] F. Corno, M. S. Reorda, G. Squillero, A new evolutionary algorithm
inspired by the selfish gene theory, in: Evolutionary Computation Pro-
ceedings, 1998. IEEE World Congress on Computational Intelligence.,
The 1998 IEEE International Conference on, IEEE, pp. 575–580.

[26] F. Corno, M. Sonza Reorda, G. Squillero, Optimizing deceptive func-
tions with the SG-clans algorithm, in: Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on, volume 3, IEEE.

[27] P. J. Angeline, J. B. Pollack, Competitive environments evolve better
solutions for complex tasks, in: Proceedings of the Fifth International
Conference on Genetic Algorithms, San Mateo, California, pp. 264–270.

[28] M. A. Potter, K. A. De Jong, Cooperative coevolution: An architecture
for evolving coadapted subcomponents, Evolutionary computation 8
(2000) 1–29.

31

[29] P. J. Darwen, X. Yao, Co-evolution in iterated prisoner’s dilemma with
intermediate levels of cooperation: Application to missile defense, In-
ternational Journal of Computational Intelligence and Applications 2
(2002) 83–107.

[30] A. Tonda, E. Lutton, G. Squillero, A benchmark for cooperative coevo-
lution, Memetic Computing 4 (2012) 263–277.

[31] E. Sanchez, M. Schillaci, G. Squillero, Evolutionary Optimization: the
µGP toolkit, Springer Publishing Company, Incorporated, 1st edition,
2011.

[32] G. Squillero, MicroGP-an evolutionary assembly program generator,
Genetic Programming and Evolvable Machines 6 (2005) 247–263.

[33] A. Brindle, Genetic algorithms for function optimization (1981).

[34] K. A. De Jong, An analysis of the behavior of a class of genetic adap-
tive systems, Ph.D. thesis, PhD thesis, Dept. of Computer and Comm.
Sciences, Univ. of Michigan, Ann Arbor, MI, 1975. Univ. Microfilms,
1975.

[35] P. Levis, D. Gay, V. Handziski, J.-H. Hauer, B. Greenstein, M. Turon,
J. Hui, K. Klues, C. Sharp, R. Szewczyk, J. Polastre, P. Buonadonna,
L. Nachman, G. Tolle, D. Culler, A. Wolisz, T2: A second generation
OS for embedded sensor networks, Technical Report TKN-05-007, Tech-
nische Universität Berlin, 2005.

[36] P. Levis, N. Lee, M. Welsh, D. E. Culler, TOSSIM: Accurate and scal-
able simulation of entire TinyOS applications, in: Proceedings of the
ACM conference on Embedded Networked Sensor Systems (SenSys), pp.
126–137.

[37] J. G. Jetcheva, D. B. Johnson, Routing characteristics of ad hoc net-
works with unidirectional links, Ad Hoc Netw. 4 (2006) 303–325.

[38] H. Lee, A. Cerpa, P. Levis, Improving wireless simulation through noise
modeling, in: Proceedings of the 6th international conference on Infor-
mation processing in sensor networks, IPSN ’07, ACM, New York, NY,
USA, 2007, pp. 21–30.

32

[39] H. H. Rosenbrock, An automatic Method for finding the greatest or
least Value of a Function, The Computer Journal 3 (1960) 175–184.

[40] R. Hooke, T. A. Jeeves, Direct search solution of numerical and statis-
tical problems, Journal of the ACM 8 (1961) 212–229.

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms (3. ed.), MIT Press, 2009.

33

a. one-point crossover b. two-point crossover

-30 ≤ x ≤ 0, x ∊ ℤ

Fixed value A

c. single-parameter
mutation

d. replacement
mutation

-29 -15

-7 A

Figure 2: µGP genetic operators selected for the experiments. The single-point (a) and
two-point (b) crossovers produce children individuals by mixing the genome of two parents.
In the chosen individual structure, every locus in the genome can host two different types
of parameters, an integer in the interval [-30,0] and a fixed value A. Thus, two different
mutation operators are used: the single-parameter mutation (c) changes the value of an
integer parameter; while the replacement mutation (d) can switch a locus from an integer
to a fixed parameter, and vice-versa.

Large set of high-fitness
WSN topologies

Set of empirical
topological metrics

Correlate
fitness:metrics

Select metric
with high correlation

Verify causality
metric:fitness

with reverse testing

Figure 3: From correlation to causality: conceptual scheme for learning the topological
causes for high-fitness WSNs.

34

μGP

Candidate WSN
topologies

TOSSIM
(Radio events

logged)

Event logs

Fitness
value

Protocol
implementation

Log parser

Figure 4: Conceptual scheme of the proposed approach to the evolutionary-driven simu-
lation of WSN routing protocols.

35

 6

 7

 8

 0 50 100 150 200 250

F
it
n

e
s
s
 i
n

te
rv

a
l
(x

1
0

0
0

)
 p

e
r

g
e

n
e

ra
ti
o

n

Generations

MHLQI: The sequence of generations for
 30-node WSNs, density 1/8, SUM fitness

Min/avg/max fitness per generation

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 50 100 150 200 250

F
it
n

e
s
s
 i
n

te
rv

a
l
(x

1
0

0
0

)
 p

e
r

g
e

n
e

ra
ti
o

n

Generations

CTP: The sequence of generations for
 30-node WSNs, density 1/2, SUM fitness

Min/avg/max fitness per generation

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 50 100 150 200 250 300

F
it
n

e
s
s
 i
n

te
rv

a
l
(x

1
0

0
0

)
 p

e
r

g
e

n
e

ra
ti
o

n

Generations

CTP: The sequence of generations for
 30-node WSNs, density 1/8, SUM fitness

Min/avg/max fitness per generation

Figure 5: Fitness trend obtained by EA-driven experiments (top) for MHLQI with (net-
work size: 30, network density 1/8, fitness: SUM), (middle) for CTP with (network size:
30, network density 1/8, fitness: SUM), and (bottom) for CTP with (network size: 30,
network density 1/2, fitness: SUM).

36

MHLQI: 100 random 20-node topologies (sorted)

 3

 6
network density: 1/2

 3

 6

 0 10 20 30 40 50 60 70 80 90

S
U

M
 (

x
1

0
0

0
)

Index of random topology

network density: 1/4

MHLQI: Top 100 20-node unique evolutionary individuals

 3

 6

network density: 1/2

 3

 6

 0 10 20 30 40 50 60 70 80 90

S
U

M
 (

x
1

0
0

0
)

Index of individual

network density: 1/4

CTP: 100 random 20-node topologies (sorted)

 60

 120 network density: 1/2

 60

 120

 0 10 20 30 40 50 60 70 80 90

S
U

M
 (

x
1

0
0

0
)

Index of random topology

network density: 1/4

CTP: Top 100 20-node unique evolutionary individuals

 60

 120

network density: 1/2

 60

 120

 0 10 20 30 40 50 60 70 80 90

S
U

M
 (

x
1

0
0

0
)

Index of individual

network density: 1/4

Figure 6: Fitness evaluations for 100 random topologies and the top 100 unique evolution-
ary individuals, (network size: 20, network density 1/2, 1/4) for both protocols and the
SUM fitness. Every fitness value is plotted as the mean over the 16 fitness evaluations per
topology, with the standard deviation over these evaluations shown as an error bar.

37

0 sink

1

10 14

2

3

16

17

4

9 15

5

8 13 6

12

7

1918

11

 0

 2

 4

 6

 8

 10

 12

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

N
u

m
b

e
r

o
f

n
o

d
e

s

Intervals of radio events per node (x1000)

Figure 7: CTP: Top EA individual for
(network size: 20, network density: 1/4,
fitness: SUM), with resulted best fitness
SUM=123,000. In the histogram of radio
events per node, nodes 2, 3, 4, 7, 9, 15, 16,
and 19 fall into the top two buckets; the
sink 0 node falls in the lowest bucket.

0 sink

16

1

7

810

14

2

36

12 13

9

11

4

15

5

1817 19

 0

 2

 4

 6

 8

 10

 12

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

N
u

m
b

e
r

o
f

n
o

d
e

s

Intervals of radio events per node (x1000)

Figure 8: CTP: Top EA individual for (net-
work size: 20, network density: 1/2, fit-
ness: SUM), with SUM=98,000. All nodes
besides the sink have similar, comparably
low counts of radio events.

Generate empty directed graph G

Add N number of nodes to G

Add to G a random number of bidirectional cycles of

random size (less than a certain bound B), so that

the cycles are sink-reachable, disconnected

from each other, and collectively contain a random

fraction (above a certain bound F) of the nodes

Add to G a number of random edges, so that the final

number of edges in G is within a small percentage

of N*(N-1)*D, avoiding to connect existing components

when possible, and avoiding to connect any node

to the sink bidirectionally

Figure 9: Algorithm for empirically generating worst-traffic test topologies of a given
size N, and density D, for CTP. Lowering B increases the CSUC metric in the generated
topology. We set F to be 90% of N-1, in order to generate topologies with NSUC within
10% of its absolute maximum value.

38

0 sink

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

 0

 2

 4

 6

 8

 10

 12

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

N
u

m
b

e
r

o
f

n
o

d
e

s

Intervals of radio events per node (x1000)

Figure 10: CTP: top topology resulted from
reverse testing, for (network size: 20, net-
work density: 1/4, fitness: SUM), with
SUM=254,478. All nodes except 0,1, and
2 fall in the top buckets with counts of ra-
dio events per node of over 10,000; the sink
0 node falls in the lowest bucket.

0 sink 15

1

2

3

4

6

7

8

9

10
11

12

13

5

16

14

17

18
19

 0

 2

 4

 6

 8

 10

 12

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

N
u

m
b

e
r

o
f

n
o

d
e

s

Intervals of radio events per node (x1000)

Figure 11: CTP: top topology resulted from
reverse testing, for (network size: 20, net-
work density: 1/2, fitness: SUM), with
SUM=164,239. Nodes 13 to 19 fall in the
top two buckets; the sink 0 node falls in the
lowest bucket.

39

 0

 5

 10

 15

 20

 0 50 100 150 200

N
SU

C

SUM: Total network traffic count (x1000)

20-node disconnected WSNs

EA, 1/2
reverse, 1/2

EA, 1/4
reverse, 1/4

 0
 5

 10
 15
 20
 25
 30

 50 100 150 200 250 300 350

N
SU

C

SUM: Total network traffic count (x1000)

30-node disconnected WSNs

EA, 1/2
reverse, 1/2

EA, 1/4
reverse, 1/4

EA, 1/8
reverse, 1/8

Figure 12: CTP: scatterplots showing the correlation between the total network traffic
(the SUM fitness function) and the NSUC metric. We plot both topologies resulted from
the EA-driven simulation (in black), and those resulted from reverse testing (in red).

40

 10

 20

 30

1/2 1/4 1/8 1/16

M
AX

 /
re

fe
re

nc
e

Density

10 nodes
20 nodes
30 nodes
50 nodes

 10

 20

 30

 40

1/2 1/4 1/8 1/16

SU
M

 /
re

fe
re

nc
e

Density

10 nodes
20 nodes
30 nodes
50 nodes

Figure 13: Ratios of the top fitness values (MAX and SUM) found in this study for CTP,
when compared with the respective fitness values for the reference grid topology.

41

