
Runtime verification for LTL
[Automated Reasoning, 2015/2016 1b — Lecture 7]

Doina Bucur

d.bucur@rug.nl

Jan 2016

Summary

In this lecture...

Runtime verification: overview

From temporal specification to monitors

The checking algorithm: an acceptance check

We see a form of model checking suitable to verify not a system design, but an
execution trace of a system. This is akin to testing, but allows for formal
temporal specifications and guarantees. This method is called runtime
verification, or simply monitoring, and is computationally lightweight.

Runtime verification works as follows: (1) the atomic propositions from AP are

now runtime events; (2) the resulting trace of runtime events is a finite word over

AP; (3) this word is checked for inclusion in the language generated by a LTL

formula f , as usual in automata-based model checking.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 2 / 18

Summary

Use of runtime verification

I At each new step in the system execution: says whether the system
satisfies or not the specification... so far.

I Research is mainly focussed on efficient algorithms for the real-time
detection of violations of safety specifications.

I When a violation is detected over a real system, it is expected that
predefined code is executed, to, e.g., notify users about the error,
contain the error, or correct the error.

I We don’t discuss matters of error correction, but focus on error
detection.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 3 / 18

Summary

Building blocks for automata-based runtime verification
I A set of atomic propositions AP of interest.
I A temporal specification over AP, and its translation into an

appropriate automata form.
I This is usually called a monitor.
I To express this automaton, I show you a new type of Büchi automata

called Transition-based Generalized Büchi Automata (TGBA). Other,
slightly different types of automata, can also do the job.

I A model, i.e., a linear transition system (with transition labels from
AP) obtained from the system execution.

I An implemented verification algorithm to check whether the model is
“included” in the specification. This is extremely simple because of
the linearity of the model: it amounts to executing the monitor over
the model.

Crucial fact: all of the above reside and run on the system under test.
This adds memory overhead (linear in the size of the monitor) and some
computational overhead. The monitor must be kept small.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 4 / 18

Summary

Runtime verification vs. model checking

Model checking Runtime verification

acts at design- or compile-time acts at runtime
prevents errors detects errors

checks many (infinite) executions checks one finite execution
is computationally heavyweight is computationally lightweight

does not modify the system adds logging overhead to the system

both support temporal logics
can check for safety and liveness can check for safety

(often uses past-time
temporal logics)

is a language-inclusion problem is a word-inclusion problem
a check can be complete a check is incremental

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 5 / 18

Runtime verification: overview

A system execution

...is formally a simple, linear automaton:

/\T

0 s1 s2 sk−1 sk

...
/\T /\T

s

Runtime verification: overview

A system execution

...is formally a simple, linear transition system (as in Lectures 2/3):

/\T

0 s1 s2 sk−1 sk

...
/\T /\T

s ...

Doina Bucur (RuG) Runtime verification for LTL and Past-time LTL Jan 2013 3 / 6

where:

I labels may be attached to transitions (as in Büchi automata) or,
equivalently, to states (as in Kripke structures)

I s0 is the first system state under monitoring

I sk is the “current” or “now” system state
(i.e., after the latest execution step)

I the path s0s1s2 . . . sk is necessarily finite, and increasing

I states following sk are unknown

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 6 / 18

Runtime verification: overview

Model the system via logging
Aim: obtain a formal, linear model of the execution.

Method:

I Decide on the relevant AP set, e.g.:
p := process0 is at line 5
q := (pointer == 0xbeef)

r := (ncrit > 1)

I This AP is dictated by the specification(s) to be
checked.

I Engineer the existing system (written in C, Java
bytecode, binary, etc.) with added logging code,
so that the boolean variables p, q, r evolve their
values correctly. (These changes are called
runtime events.)

This is sufficient to infer the required model.

.
.
.

p, !r

p,!r

!p, !r

p, !r

!p, !r

p, r

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 7 / 18

Runtime verification: overview

Runtime verification: overview

.
.
.

p, !r

p,!r

!p, !r

p, !r

!p, !r

p, r

system execution

(a single word over

AP = {p, r})

0 p

positive temporal property
Gp as a (new type of) Büchi

automaton

(all transitions here are

accepting)

Runtime verification checks the

inclusion of the system execution

(a word) into the positive temporal

property (a language) — just like

static model checking. Only the

definition of acceptance changes.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 8 / 18

From temporal specification to monitors

The monitors:
Transition-based generalized Büchi automata (TGBA)

You have seen that central to automata-based model checking are Büchi
automata, a form of ω-automata where acceptance equals traversing
infinitely often a set of accepting states.

It was found that transition-based automata, where acceptance is
defined in term of transitions, generally leads to smaller automata1 (and
monitor size is important; it determines the amount of runtime overhead
introduced by the runtime verification).

1As per From States to Transitions: Improving translation of LTL formulae to Büchi
automata. Dimitra Giannakopoulou and Flavio Lerda, FORTE 2002. Online at
http://ti.arc.nasa.gov/m/profile/dimitra/publications/forte02.pdf.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 9 / 18

http://ti.arc.nasa.gov/m/profile/dimitra/publications/forte02.pdf

From temporal specification to monitors

TGBA: definition

A Transition-based Generalized Büchi Automaton (TGBA) over the
alphabet Σ is a Büchi automaton with labels on transitions, and
acceptance conditions also on transitions rather than states2.

Definition (TGBA)

A TGBA is a tuple A := (Σ,Q,∆, q0,F) where

I Σ is a finite alphabet of symbols.

I The state space Q is finite.

I The initial state is q0 ∈ Q; there are no accepting states.

I F is a finite set of acceptance labels for transitions.

I ∆ is the transition relation, ∆ ⊆ Q × 2Σ \ ∅ × 2F × Q.

2The TGBAs here were translated from LTL using the SPOT tool
http://spot.lip6.fr/ltl2tgba.html. For a translation algorithm, see their paper.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 10 / 18

From temporal specification to monitors

TGBA: finite acceptance

A finite word v over the alphabet Σ is accepted by A if:

I there exists a sequence of transitions from ∆, starting at q0, such
that ∀i ≥ 0, v [i] is included in the ith transition label

I the sequence of transitions traverses an accepting transition
continuously.

In many practical cases, all cycles are accepting.

A TGBA can be constructed for a given LTL property f such that it
accepts exactly the temporal words described in f .

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 11 / 18

From temporal specification to monitors

Monitors: examples (safety)

0 p

Gp

no acceptance

condition (all

transitions

accepting)

1 !q

0

q & p

p

G(q → Gp)
“p is true globally after

q”

(all transitions

accepting)

pUq

(1 acceptance condition:

Acc[1])

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 12 / 18

From temporal specification to monitors

Monitors: examples (safety)

aU(bU(cU(dU(eU(f U(gU(hU(iU(jUk)))))))))
an Until 10-chain

(1 acceptance condition: Acc[1])

(expressing this monitor takes 24k of executable code, compiled from C)

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 13 / 18

From temporal specification to monitors

Monitors: why not also liveness?

Liveness properties are those whose counterexamples are necessarily
infinite.

Thus, a purely liveness property cannot be violated (but can be passed!)
over a finite execution.

The only results of runtime verification for liveness are either verification
successful or undetermined.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 14 / 18

The checking algorithm: an acceptance check

The checking algorithm

.
.
.

p, q

p, !q

p, q

!p, !q

p,!q

system execution

(a single word over AP)

1 !q

0

q & p

p

temporal property, G(q → G(p))

(all transitions accepting)

What is the time complexity of the acceptance check?

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 15 / 18

The checking algorithm: an acceptance check

Monitors: deterministic or nondeterministic?

The example monitors here are deterministic.

Ideally, the monitors should be deterministic: a deterministic monitor has
constant computational complexity for checking, instead of linear in the
size of the automaton.

However, you’ve mostly seen Büchi automata being generated (e.g., by
Spin) in nondeterministic form. Any nondeterministic automaton over
finite words can be determinized; the final step is to do some pruning to
eliminate accepting paths for infinite words.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 16 / 18

The checking algorithm: an acceptance check

A real-life framework: Java Path Explorer
A runtime verification tool for Java (from NASA Ames)34.

Java
 Program

Bytecode

Instrumented
Bytecode
D

ip
at

ch
er

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

Ev
en

t S
tre

am

Instrument

Compile

(JVM)
Execute

Instrumentation

Maude

3An Overview of the Runtime Verification Tool Java PathExplorer. Klaus Havelund,
Grigore Rosu. Formal Methods in System Design, Vol. 24, Issue 2, pp 189-215, 2004.

4Maude is an LTL model checker.
Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 17 / 18

The checking algorithm: an acceptance check

A real-life framework: Microcontroller monitoring
A runtime verification tool for binary code 5.

previous state and is false in the current state, equivalent to ¬ ^ �), and
[1, 2) for interval 1 2 (2 was never true since the last time 1 was true,
including the state when 1 was true, equivalent to ¬ 2 ^ ((�¬ 2) S 1)). The
set of atomic propositions AP contains statements over memory locations in Locs.
Space constraints force us to refer the reader to [10,15,20] for a formal semantics.

Determining satisfaction: It is important to appreciate that satisfaction of
a ptLTL formula can be determined along the execution trace by evaluating only
the current state S and the results from the predecessor state S�1 [15].

3 System Overview

The following section details our runtime verification framework, as depicted
in Fig. 1, which works on microcontroller binary code rather than a high-level
representation of the program, thus meeting Req1.

H
o
st

A
p
p
li
ca

ti
o
n

H
W

M
o
n
it

o
r

S
U

T
(I

P
-C

o
re

)

State

updater

Synth.
SW ptLTL
observer

Atomics
checker

S

Binary
*.hex

Environ-
ment

A

A

• A

•

Synth.
HW ptLTL
observer

Atomics
checkers
Atomics
checkers

Event
logger
�0 . . . �n

A•A

A

AA A

A AProgram interface

Data interface

I/O &
Pheriph-

erals

CPU

RAM

PROM

F
P

G
A

USB

Fig. 1. System overview

We address Req2 by a hardware monitor unit, which is transparently attached
to an industrial microcontroller IP-core running on an FPGA. The monitor allows

5Past Time LTL Runtime Verification for Microcontroller Binary Code. T. Reinbacher
et al. Formal methods for industrial critical systems, pp 37-51, 2011. Best paper award.

Doina Bucur (d.bucur@rug.nl) Runtime verification for LTL Jan 2016 18 / 18

	Runtime verification: overview
	From temporal specification to monitors
	The checking algorithm: an acceptance check

