
Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Formal verification:

The story about system correctness

[Automated Reasoning, 2015/2016 1b — Lecture 1]

Doina Bucur

d.bucur@rug.nl

Nov 2015

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 2

What is automated reasoning?

(Check the Stanford Encyclopedia of Philosophy for an overview; skim through topics you may be
interested in. http://plato.stanford.edu/entries/reasoning-automated/)

Reasoning = solving problems by mathematically proving the answer:

Take the problem assumptions.
Systematically apply deductive rules from logic
…until a conclusion is reached.

Automated reasoning simply automates this.

Tools: software verifiers, model checkers, static analysers, theorem
provers, runtime memory profilers.

Model checking (or formal verification) is an example; it verifies the
correctness of the model of a system (design or implementation)
against a specification. Like any mathematical proof, it provides
guarantees.

http://plato.stanford.edu/entries/reasoning-automated/

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Scientific aim:
a “Verifying Compiler”

(T. Hoare, Turing Award 1980 for fundamental contributions to the
definition and design of programming languages)

“At present, the most widely accepted means of raising trust levels of
software is by massive and expensive testing.

A verifying compiler uses mathematical and logical reasoning to check the
correctness of the programs that it compiles.

The criterion of correctness is specified by types, assertions, and other
redundant annotations associated with the code of the program.”

3

(The verifying compiler: A grand challenge for computing
research. Tony Hoare. J. ACM 50, 1, 63-69. 2003.)

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Verification vs. testing

Testing (or Validation): executing with a set of inputs to see that
the system will sometimes do as intended.

Verification: formally proving that the system will always (i.e., for
any inputs) do as intended (the system is said to be “correct”).

4

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Critical systems

5

Hardware and software systems are used in
applications where failure is unacceptable.

Motivation

Softwaremostcomplexcomponentofcriticalsystems

D.Kroening:SoftwareVerification(HT08/09)3

Bugs in critical systems

4

ESA European Space Agency, Ariane 5 first
launch, 1996. Failure: velocity reading

overflowed 16 bits, triggering an autodestruct.

Atomic Energy of Canada, Therac-25
radiation therapy machine ‘85-87. Radiation

overdoses (x100). Failure: race condition

The Mars Climate Orbiter crashed Sep 1999 due to wrong program units (non-metric).
A China Airlines Airbus Industrie A300 crashes Apr 26, 1994 killing 264.
Recommendations include software modifications.
On Oct 24, 2013, a court ruled against Toyota in a case of unintended acceleration that
lead to the death of one the occupants. Central to the trial was the Engine Control
Module's (ECM) firmware.
486-DX4s, Pentiums and Pentium clones had a bug in their floating-point division
algorithm discovered in 1994. Intel set aside US $475 million to cover the costs.

http://www.cs.tau.ac.il/~nachumd/horror.html

http://en.wikipedia.org/wiki/Atomic_Energy_of_Canada_Limited
http://www.cs.tau.ac.il/~nachumd/horror.html

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Toyota’s electronic throttle control system (ETCS) source code is of
unreasonable quality.
Toyota’s source code is defective and contains bugs, including bugs that can
cause unintended acceleration.
A litany of faults were found in the code, including buffer overflow, unsafe
casting, and race conditions between tasks.
Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-
killing, MISRA-C rule-violating recursion was found in the code, and the CPU
doesn't incorporate memory protection to guard against stack overflow.
MISRA-C:1998, in effect when the code was originally written, has 93 required
and 34 advisory rules. Toyota nailed 6 of them.

7

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--
Bad-design-and-its-consequences

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--Bad-design-and-its-consequences

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Formal verification methods

8

Errors should be eliminated in the design and
implementation process (i.e., statically).

When this is not possible, the remaining errors should
be caught at runtime before they occur.

Research existed early on in Computer Science
around theories to prove the quality of complex
concurrent systems. The application to real-life
systems is recent.

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Our model checkers:

SPIN (Simple Promela Interpreter)
http://spinroot.com
CBMC (Bounded Model Checker for ANSI-C)
http://www.cprover.org/cbmc/

9

http://spinroot.com/
http://www.cprover.org/cbmc/

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Model checkers for C/Java

10

[D’Silva, Kroening, Weissenbacher, “A Survey of
Automated Techniques for Formal Software Verification”,
IEEE Transactions on Computer Aided Design. 2008]

TRANSACTIONS ON CAD 12

Tool name Tool developer LanguagesSym
bo

lic
an

aly
sis

Abs
tra

cti
on

Cou
nte

rex
am

ple

BM
C

Con
cu

rre
nc

y

⇥ ⇥ASTRÉE École Normale Supérieure C (subset)
⇥ ⇥CODESONAR Grammatech Inc. C, C++, ADA
⇥ ⇥ ⇥PolySpace PolySpace Technologies C, C++, ADA, UML
⇥ ⇥ ⇥PREVENT Coverity C, C++, Java

II

⇥ ⇥ ⇥ ⇥BLAST UC Berkeley/EPF Lausanne C
⇥ ⇥ ⇥F-SOFT (abs) NEC C
⇥ ⇥ ⇥ ⇥Java PathFind. NASA Java
⇥ ⇥ ⇥ ⇥1MAGIC Carnegie Mellon University C
⇥ ⇥ ⇥ ⇥SATABS Oxford University C, C++, SpecC, SystemC
⇥ ⇥ ⇥ ⇥SLAM Microsoft C

⇥ ⇥ ⇥SPIN Bell Labs2 PROMELA, C3

⇥ ⇥ ⇥ZING Microsoft Research ZING (object oriented)

II
I

⇥ ⇥ ⇥CBMC CMU/Oxford University C, C++, SpecC, SystemC
⇥ ⇥ ⇥F-SOFT (bmc) NEC C
⇥ ⇥ ⇥EXE Stanford University C
⇥ ⇥ ⇥SATURN Stanford University C

IV

1) does not support shared memory concurrency
2) originally developed by Bell Labs, now freely available
3) C is supported by automatic translation to PROMELA

TABLE I
TOOL OVERVIEW

ACKNOWLEDGEMENTS. We thank Michele Mazzucchi,
Viktor Schuppan, and Thomas Wahl for their helpful input.

REFERENCES

[1] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality
of variables in programs. In Principles of Programming Languages
(POPL), pages 1–11. ACM, 1988.

[3] N. Amla and K. L. McMillan. A hybrid of counterexample-based and
proof-based abstraction. In Formal Methods in Computer-Aided Design
(FMCAD), volume 3312 of LNCS, pages 260–274. Springer, 2004.

[4] L. O. Andersen. Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, DIKU, University of Copenhagen,
May 1994.

[5] T. Andrews, S. Qadeer, S. K. Rajamani, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software. In Concur-
rency Theory (CONCUR), pages 1–15. Springer, August 2004.

[6] A. Armando, J. Mantovani, and L. Platania. Bounded model checking
of software using SMT solvers instead of SAT solvers. In Model
Checking and Software Verification (SPIN), volume 3925 of LNCS,
pages 146–162. Springer, 2006.

[7] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approach to
language containment. In Computer Aided Verification (CAV), volume
697 of LNCS. Springer, 1993.

[8] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations
in software predicate abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2988 of LNCS.
Springer, 2004.

[9] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic
theorem proving for predicate abstraction refinement. In Computer
Aided Verification (CAV), volume 3114 of LNCS. Springer, 2004.

[10] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and
Static Driver Verifier: Technology transfer of formal methods inside
Microsoft. In Integrated Formal Methods (IFM), volume 2999 of
LNCS. Springer, 2004.

[11] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Programming Language Design
and Implementation (PLDI), pages 203–213. ACM, 2001.

[12] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. Software Tools for
Technology Transfer (STTT), 5(1):49–58, 2003.

[13] T. Ball and S. Rajamani. Generating Abstract Explanations of Spurious
Counterexamples in C Programs. Technical Report MSR-TR-2002-09,
Microsoft Research, January 2002.

[14] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
for Boolean programs. In Model Checking and Software Verification
(SPIN), volume 1885 of LNCS, pages 113–130. Springer, 2000.

[15] T. Ball and S. K. Rajamani. Boolean programs: A model and process
for software analysis. Technical Report 2000-14, Microsoft Research,
February 2000.

[16] J. Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley, 2003.

[17] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. In Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, volume 3362 of LNCS, pages 49–69.
Springer, 2004.

[18] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for
bit-vector arithmetic. In Design Automation Conference (DAC), pages
522–527. ACM, June 1998.

[19] R. E. Bellman. Dynamic programming. Princeton University Press,
1957.

[20] S. Berezin, V. Ganesh, and D. Dill. A decision procedure for fixed-
width bit-vectors. Technical report, Computer Science Department,
Stanford University, 2005.

[21] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invari-
ant synthesis for combined theories. In Verification, Model Checking
and Abstract Interpretation (VMCAI), volume 4349 of LNCS, pages
378–394. Springer, 2007.

[22] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. In Programming Language Design and Implementation
(PLDI), pages 300–309. ACM, 2007.

[23] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Model checking

11

Model checking -- a subset of
verification techniques:

... a static, model-based, fully automatic,
exhaustive technique for proving absence

of errors in finite-state concurrent systems.

specification

Safety

“the two traffic lights should never show a green light
at the same time”

something bad never happens

D. Kroening: Software Verification (HT 08/09) 22

discrete system
as state-transition

model
Extracting models from hardware, software, and protocols Software: sequential and concurrent

...Then, P0kP1 is:

=nc

0pc0 =l1pc1

=nc 0pc0 =l1pc1=nc 1pc1 pc0=cr 0

pc0=cr 0 =nc 1pc1

=l0pc0
=l

 0pc0 =l1pc1

=l1pc1

=l0pc0 =nc 1pc1

=nc 0pc0 =nc 1pc1=l0pc0 pc1=cr 1

=nc 0pc0 pc1=cr 1

=nc 0pc0 =l1pc1=l0pc0 =nc 1pc1

turn=0

turn=0

turn=0

turn=1turn=0

turn=1

turn=1turn=1

turn=1

turn=0

turn=0

turn=1

Now check visually:

I Does this program ensure mutual exclusion?

I Can a process be denied forever entrance to its critical region? Why?

I If you find hard to answer the “Why?”, try labelling all your graph’s
transitions.

Doina Bucur (RuG/INCAS3) Modelling systems, model extraction, and basic checking Nov 2011 19 / 25

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 12

The program is modelled as a transition relation:

T 2 S ⇥ S

pre-state post-state

Modelling computing systems Kripke structures. Definition and intuition

A simple example: from code to Kripke structure

/* x and y start at 0 */
l1 while (true)
l2 x = (x+1) mod 3, y = x+1;

I State s ⇤ S is a valuation of V = {x , y};
I With D the variables’ domain,

S ⇥ D � D; only reachable states are
shown here;

I In s0, x = 0, y = 0;

I AP expresses exactly these valuations;

I A transition � ⇤ T encodes an atomic
assignment.

3

s1

s
2

s3

s
0

{x=0,y=1}

{x=0,y=0}

{x=1,y=2}

{x=2,y=3}

α

α
α

α

1

0

2

Doina Bucur (RuG/INCAS3) Modelling systems, model extraction, and basic checking Nov 2011 7 / 25

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

What specifications?

13

Take such a model, and ask whether states with the particular
property, say, “ptr==0”, are reachable. This is how you check for
NULL-pointer dereferences.

In general, you can check for properties such as:
Can the assert(var != c) be violated?
Can the program deadlock or livelock?
Can an array be accessed out of bounds?
Can this variable overflow?
Can a division by zero happen?

Temporal properties:
Does var == c happen eventually?
Will var2 > c only happen after var1 > c?
Does var == c happen within 10 seconds from system boot?
Does var == c happen within 10 seconds from system boot
with probability 99%?

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

In a nutshell: Model checking

14

Model Checking

Ed Clarke

Allen Emerson

Joseph Sifakis

I Determines validity of a temporal
logic formula on a given model

I Key idea: use fixed-point
characterisation

I Turing Award 2007

D. Kroening: Software Verification (HT 08/09) 38

Determined validity of a
LTL formula on a finite-
state model.

Turing Award 2007.

Introduced temporal logic into
computing science for
program and systems
verification.

Turing Award 1996.

Linear Temporal Logic (LTL)

Amir Pnueli

I classical propositional temporal
logic (PTL)

I first extensive use of a temporal
logic in computer science

I Turing Award 1996

D. Kroening: Software Verification (HT 08/09) 24

http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Formal_verification

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015
S
p
ecifi

cation
s
an

d
L
in
ear

T
em

p
oral

L
ogic

(LT
L
)

D
efi

n
in
g
LT

L
op

erators
an

d
form

u
las

LT
L
tem

poraloperators
(1)

X
p

“
n
e
x
t
t
i
m
e
”.

P
roperty

p
holds

at
the

second
state

on
the

path.

!p p!p p!q q
R

q
p

!q q !p p

U
q

p X
p

F
p

G
p

!p p !p pp!pq!q

o
r:

F
p

“
i
n
t
h
e
f
u
t
u
r
e
”
or

“
e
v
e
n
t
u
a
l
l
y
”,

also
denoted

3
p.

P
roperty

p
holds

at
som

e
state

on
the

path
(after

a
finite

num
ber

of
states).

!p p!p p!q q
R

q
p

!q q !p p

U
q

p X
p

F
p

G
p

!p p !p pp!pq!q

o
r:

G
p

“
g
l
o
b
a
l
l
y
”
or

“
a
l
w
a
y
s
”,

also
denoted

2
p.

P
roperty

p
holds

at
every

state
on

the
path.

!p p!p p!q q
R

q
p

!q q !p p

U
q

p X
p

F
p

G
p

!p p !p pp!pq!q

o
r:

D
oin

a
B
u
cu

r
(R

u
G
/IN

C
A
S
3)

S
ystem

sp
ecifi

cation
w
ith

tem
p
oral

logic
N
ov

2011
6
/
28

Runtime checking

15

Model checking -- a subset of
verification techniques:

... is a dynamic, model-based, automatic,
exhaustive technique for proving absence

of errors in executions of systems.
system execution

as state-machine model
specification

Safety

“the two traffic lights should never show a green light
at the same time”

something bad never happens

D. Kroening: Software Verification (HT 08/09) 22

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

In this course:

1. You get an intro to the principle and practice of model
checking. You check a model against its specification
both (i) statically (i.e., at system design-time or
compile-time) and (ii) dynamically (i.e., at system
runtime). Both build on the same fundamentals.

2. We cover transition systems, a temporal logic
(LTL) to write specifications, and some checking
algorithms and their complexity. We see how to
automatically extract formal models out of sequential/
concurrent software.

3. We take examples from the software domain, and
use the model checkers SPIN (now developed at
NASA JPL) and CBMC (Carnegie Mellon, University
of Oxford).

16

recommended

Some success stories for model checking

17

NASA runs in-house formal
methods group. SPIN is

developed there. Deep Space 1
controls were debugged with

Spin.

Modern OSes and drivers:
Linux, MS Windows.
Microsoft Research

develops and uses the
SLAM model checker.

Motivation

Software most complex component of critical systems

D. Kroening: Software Verification (HT 08/09) 3

BMW, GM, Toyota do some
R&D of verification tools for

automotive software.

Intel has a large in-house
verification group.Prover Technologies does

verification for Airbus control
software, railway/metro
interlocking systems.

Part of the Maeslantkering
decision system was
debugged with SPIN.

Some
success stories for
runtime checking

18

[Java PathExplorer: A Runtime Verification Tool,
http://ti.arc.nasa.gov/m/pub-archive/archive/0262.pdf.
Experimented with on the NASA Ames K9 Rover Executive.

Generally, search the Intelligent Systems Division at NASA
for applications of verification: http://ti.arc.nasa.gov/
publications/]

Java
 Program

Bytecode

Instrumented
Bytecode

D
ip

at
ch

er

. . .

LTL

Datarace

Deadlock

Observer

Specifications

Verification

Ev
en

t S
tre

am

Instrument

Compile

(JVM)
Execute

Instrumentation

Maude

http://ti.arc.nasa.gov/publications/

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Course structure

19

1 Formal verification: The story about system correctness (this lecture)
2 Modelling systems and model extraction

Exam
topics

3 Specifications with Linear Temporal Logic (LTL)
4-5 Model checking for LTL
6 Bounded model checking with SAT
7 Runtime checking for LTL
8 The big picture: other techniques for system analysis and verification

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 20

Where to read more:

Some of the content in
this lecture is covered in
Ch.1, Introduction, from
Model Checking, E. M.
Clarke, O. Grumberg, D.
A. Peled.

You find a short history
of Spin and some
motivation for model
checking in Ch. 1,
Finding Bugs in

Concurrent Systems,
from The Spin Model

Checker, G. J.
Holzmann.

You may also read on
the topic in Ch. 1,
System Verification,
from Principles of

Model Checking, C.
Baier, J.-P. Katoen.

Doina Bucur (d.bucur@rug.nl) Model Checking: Motivation and Introduction Nov 2012 2 / 2

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Contact info and
course administration

Course page: doina.net/AR.html

Contact: Doina Bucur <d.bucur@rug.nl>

Assignments: Individual. Have strict deadlines. I count on you
trying to solve these problems through self-study; don’t hesitate to
resort to me for any sort of help.

Use the lab sessions as

help desk for the assignments, and/or
handing-in hour.

21

http://doina.net/AR.html
mailto:doinabucur@incas3.eu

