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What is automated reasoning?

( Check the Stanford Encyclopedia of Philosophy for an overview; skim through topics you may be 
interested in. http://plato.stanford.edu/entries/reasoning-automated/ )

Reasoning = solving problems by mathematically proving the answer:

Take the problem assumptions.
Systematically apply deductive rules from logic
…until a conclusion is reached.

Automated reasoning simply automates this. 

Tools: software verifiers, model checkers, static analysers, theorem 
provers, runtime memory profilers.

Model checking (or formal verification) is an example; it verifies the 
correctness of the model of a system (design or implementation) 
against a specification. Like any mathematical proof, it provides 
guarantees.

http://plato.stanford.edu/entries/reasoning-automated/
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Scientific aim: 
a “Verifying Compiler”

(T. Hoare, Turing Award 1980 for fundamental contributions to the 
definition and design of programming languages) 

“At present, the most widely accepted means of raising trust levels of 
software is by massive and expensive testing.

A verifying compiler uses mathematical and logical reasoning to check the 
correctness of the programs that it compiles. 

The criterion of correctness is specified by types, assertions, and other 
redundant annotations associated with the code of the program.”

3

( The verifying compiler: A grand challenge for computing 
research. Tony Hoare. J. ACM 50, 1, 63-69. 2003. )
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Verification vs. testing

Testing (or Validation): executing with a set of inputs to see that 
the system will sometimes do as intended.

Verification: formally proving that the system will always (i.e., for 
any inputs) do as intended (the system is said to be “correct”). 

4
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Critical systems

5

Hardware and software systems are used in 
applications where failure is unacceptable.

Motivation

Softwaremostcomplexcomponentofcriticalsystems

D.Kroening:SoftwareVerification(HT08/09)3



Bugs in critical systems
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ESA European Space Agency, Ariane 5 first 
launch, 1996. Failure: velocity reading 

overflowed 16 bits, triggering an autodestruct.

Atomic Energy of Canada, Therac-25 
radiation therapy machine ‘85-87. Radiation 

overdoses (x100). Failure: race condition

The Mars Climate Orbiter crashed Sep 1999 due to wrong program units (non-metric). 
A China Airlines Airbus Industrie A300 crashes Apr 26, 1994 killing 264. 
Recommendations include software modifications. 
On Oct 24, 2013, a court ruled against Toyota in a case of unintended acceleration that 
lead to the death of one the occupants. Central to the trial was the Engine Control 
Module's (ECM) firmware.
486-DX4s, Pentiums and Pentium clones had a bug in their floating-point division 
algorithm discovered in 1994. Intel set aside US $475 million to cover the costs.

http://www.cs.tau.ac.il/~nachumd/horror.html 

http://en.wikipedia.org/wiki/Atomic_Energy_of_Canada_Limited
http://www.cs.tau.ac.il/~nachumd/horror.html


Doina Bucur (RUG)                                     Formal verification: The story about system correctness                                    Nov 2015

Toyota’s electronic throttle control system (ETCS) source code is of 
unreasonable quality.
Toyota’s source code is defective and contains bugs, including bugs that can 
cause unintended acceleration.
A litany of faults were found in the code, including buffer overflow, unsafe 
casting, and race conditions between tasks.
Toyota claimed only 41% of the allocated stack space was being used. Barr's 
investigation showed that 94% was closer to the truth. On top of that, stack-
killing, MISRA-C rule-violating recursion was found in the code, and the CPU 
doesn't incorporate memory protection to guard against stack overflow.
MISRA-C:1998, in effect when the code was originally written, has 93 required 
and 34 advisory rules. Toyota nailed 6 of them.

7

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--
Bad-design-and-its-consequences 

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--Bad-design-and-its-consequences
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Formal verification methods

8

Errors should be eliminated in the design and 
implementation process (i.e., statically). 

When this is not possible, the remaining errors should 
be caught at runtime before they occur.

Research existed early on in Computer Science 
around theories to prove the quality of complex 
concurrent systems. The application to real-life 
systems is recent.
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Our model checkers:

SPIN (Simple Promela Interpreter)                  
http://spinroot.com
CBMC (Bounded Model Checker for ANSI-C)  
http://www.cprover.org/cbmc/

9

http://spinroot.com/
http://www.cprover.org/cbmc/
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Model checkers for C/Java

10

[D’Silva, Kroening, Weissenbacher, “A Survey of 
Automated Techniques for Formal Software Verification”, 
IEEE Transactions on Computer Aided Design. 2008]

TRANSACTIONS ON CAD 12
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⇥ ⇥ASTRÉE École Normale Supérieure C (subset)
⇥ ⇥CODESONAR Grammatech Inc. C, C++, ADA
⇥ ⇥ ⇥PolySpace PolySpace Technologies C, C++, ADA, UML
⇥ ⇥ ⇥PREVENT Coverity C, C++, Java

II

⇥ ⇥ ⇥ ⇥BLAST UC Berkeley/EPF Lausanne C
⇥ ⇥ ⇥F-SOFT (abs) NEC C
⇥ ⇥ ⇥ ⇥Java PathFind. NASA Java
⇥ ⇥ ⇥ ⇥1MAGIC Carnegie Mellon University C
⇥ ⇥ ⇥ ⇥SATABS Oxford University C, C++, SpecC, SystemC
⇥ ⇥ ⇥ ⇥SLAM Microsoft C

⇥ ⇥ ⇥SPIN Bell Labs2 PROMELA, C3

⇥ ⇥ ⇥ZING Microsoft Research ZING (object oriented)

II
I

⇥ ⇥ ⇥CBMC CMU/Oxford University C, C++, SpecC, SystemC
⇥ ⇥ ⇥F-SOFT (bmc) NEC C
⇥ ⇥ ⇥EXE Stanford University C
⇥ ⇥ ⇥SATURN Stanford University C

IV

1) does not support shared memory concurrency
2) originally developed by Bell Labs, now freely available
3) C is supported by automatic translation to PROMELA

TABLE I
TOOL OVERVIEW
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Model checking

11

Model checking -- a subset of 
verification techniques:

... a static, model-based, fully automatic, 
exhaustive technique for proving absence 

of errors in finite-state concurrent systems.

specification

Safety

“the two traffic lights should never show a green light
at the same time”

something bad never happens

D. Kroening: Software Verification (HT 08/09) 22

discrete system
as state-transition 

model
Extracting models from hardware, software, and protocols Software: sequential and concurrent

...Then, P0kP1 is:
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Now check visually:

I Does this program ensure mutual exclusion?

I Can a process be denied forever entrance to its critical region? Why?

I If you find hard to answer the “Why?”, try labelling all your graph’s
transitions.

Doina Bucur (RuG/INCAS3) Modelling systems, model extraction, and basic checking Nov 2011 19 / 25
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The program is modelled as a transition relation:

T 2 S ⇥ S

pre-state          post-state

Modelling computing systems Kripke structures. Definition and intuition

A simple example: from code to Kripke structure

/* x and y start at 0 */
l1 while (true)
l2 x = (x+1) mod 3, y = x+1;

I State s ⇤ S is a valuation of V = {x , y};
I With D the variables’ domain,

S ⇥ D � D; only reachable states are
shown here;

I In s0, x = 0, y = 0;

I AP expresses exactly these valuations;

I A transition � ⇤ T encodes an atomic
assignment.

3
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Doina Bucur (RuG/INCAS3) Modelling systems, model extraction, and basic checking Nov 2011 7 / 25
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What specifications?

13

Take such a model, and ask whether states with the particular 
property, say, “ptr==0”, are reachable. This is how you check for 
NULL-pointer dereferences.

In general, you can check for properties such as:
Can the assert(var != c) be violated?
Can the program deadlock or livelock?
Can an array be accessed out of bounds?
Can this variable overflow?
Can a division by zero happen?

Temporal properties: 
Does var == c happen eventually? 
Will var2 > c only happen after var1 > c? 
Does var == c happen within 10 seconds from system boot?
Does var == c happen within 10 seconds from system boot 
with probability 99%?
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In a nutshell: Model checking

14

Model Checking

Ed Clarke

Allen Emerson

Joseph Sifakis

I Determines validity of a temporal
logic formula on a given model

I Key idea: use fixed-point
characterisation

I Turing Award 2007

D. Kroening: Software Verification (HT 08/09) 38

Determined validity of a 
LTL formula on a finite-
state model. 

Turing Award 2007.

Introduced temporal logic into 
computing science for 
program and systems 
verification.

Turing Award 1996.

Linear Temporal Logic (LTL)

Amir Pnueli

I classical propositional temporal
logic (PTL)

I first extensive use of a temporal
logic in computer science

I Turing Award 1996

D. Kroening: Software Verification (HT 08/09) 24

http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Formal_verification
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Runtime checking

15

Model checking -- a subset of 
verification techniques:

... is a dynamic, model-based, automatic, 
exhaustive technique for proving absence 

of errors in executions of systems.
system execution

as state-machine model
specification

Safety

“the two traffic lights should never show a green light
at the same time”

something bad never happens

D. Kroening: Software Verification (HT 08/09) 22



Doina Bucur (RUG)                                     Formal verification: The story about system correctness                                    Nov 2015

In this course:

1. You get an intro to the principle and practice of model 
checking. You check a model against its specification 
both (i) statically (i.e., at system design-time or 
compile-time) and (ii) dynamically (i.e., at system 
runtime). Both build on the same fundamentals. 

2. We cover transition systems, a temporal logic 
(LTL) to write specifications, and some checking 
algorithms and their complexity. We see how to 
automatically extract formal models out of sequential/
concurrent software.

3. We take examples from the software domain, and 
use the model checkers SPIN (now developed at 
NASA JPL) and CBMC (Carnegie Mellon, University 
of Oxford).

16

recommended



Some success stories for model checking

17

NASA runs in-house formal 
methods group. SPIN is 

developed there. Deep Space 1 
controls were debugged with 

Spin.

Modern OSes and drivers:  
Linux, MS Windows. 
Microsoft Research 

develops and uses the 
SLAM model checker.

Motivation

Software most complex component of critical systems

D. Kroening: Software Verification (HT 08/09) 3

BMW, GM, Toyota do some 
R&D of verification tools for 

automotive software.

Intel has a large in-house 
verification group.Prover Technologies does 

verification for Airbus control 
software, railway/metro 
interlocking systems.

Part of the Maeslantkering 
decision system was 
debugged with SPIN.



Some  
success stories for  
runtime checking

18

[ Java PathExplorer: A Runtime Verification Tool, 
http://ti.arc.nasa.gov/m/pub-archive/archive/0262.pdf. 
Experimented with on the NASA Ames K9 Rover Executive. 

Generally, search the Intelligent Systems Division at NASA 
for applications of verification: http://ti.arc.nasa.gov/
publications/ ]
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http://ti.arc.nasa.gov/publications/
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Course structure

19

1   Formal verification: The story about system correctness (this lecture)
2   Modelling systems and model extraction

Exam 
topics

3   Specifications with Linear Temporal Logic (LTL)
4-5   Model checking for LTL
6   Bounded model checking with SAT
7   Runtime checking for LTL
8   The big picture: other techniques for system analysis and verification
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Where to read more:

Some of the content in
this lecture is covered in
Ch.1, Introduction, from
Model Checking, E. M.
Clarke, O. Grumberg, D.
A. Peled.

You find a short history
of Spin and some
motivation for model
checking in Ch. 1,
Finding Bugs in

Concurrent Systems,
from The Spin Model

Checker, G. J.
Holzmann.

You may also read on
the topic in Ch. 1,
System Verification,
from Principles of

Model Checking, C.
Baier, J.-P. Katoen.

Doina Bucur (d.bucur@rug.nl) Model Checking: Motivation and Introduction Nov 2012 2 / 2
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Contact info and  
course administration

Course page:  doina.net/AR.html

Contact: Doina Bucur <d.bucur@rug.nl>

Assignments:  Individual. Have strict deadlines. I count on you 
trying to solve these problems through self-study; don’t hesitate to 
resort to me for any sort of help.

Use the lab sessions as 

help desk for the assignments, and/or 
handing-in hour.

21

http://doina.net/AR.html
mailto:doinabucur@incas3.eu

