Formal verification:

The story about system correctness
[Automated Reasoning, 2015/2016 1b — Lecture 1]

Doina Bucur

d.bucur@rug.nl

Nov 2015

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

What is automated reasoning?

Reasoning = solving problems by mathematically proving the answer:

Take the problem assumptions.
Systematically apply deductive rules from logic
...until a conclusion is reached.

Automated reasoning simply automates this.

Tools: software verifiers, model checkers, static analysers, theorem
provers, runtime memory profilers.

Model checking (or formal verification) is an example; it verifies the
correctness of the model of a system (design or implementation)
against a specification. Like any mathematical proof, it provides
guarantees.

(Check the Stanford Encyclopedia of Philosophy for an overview; skim through topics you may be
interested in. http://plato.stanford.edu/entries/reasoning-automated/)

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 2

http://plato.stanford.edu/entries/reasoning-automated/

Scientific aim:
a “Verifying Compiler”

(T. Hoare, Turing Award 1980 for fundamental contributions to the
definition and design of programming languages)

“At present, the most widely accepted means of raising trust levels of
software is by massive and expensive testing.

A verifying compiler uses mathematical and logical reasoning to check the
correctness of the programs that it compiles.

The criterion of correctness is specified by types, assertions, and other
redundant annotations associated with the code of the program.”

(The verifying compiler: A grand challenge for computing
research. Tony Hoare. J. ACM 50, 1, 63-69. 2003.)

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 3

Verification vs. testing

Testing (or Validation): executing with a set of inputs to see that
the system will sometimes do as intended.

Verification: formally proving that the system will always (i.e., for
any inputs) do as intended (the system is said to be “correct”).

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Critical systems

Hardware and software systems are used in
applications where failure is unacceptable.

1o s ;
e N
PN = ' z ll
<SRN intgle |
N o | pentium~ |
- o _,..-*”" . a :
o » 4 | ' |
! \\ . L~ y -~
© e ‘-'_!'L--/A
i._...:‘_\‘. V’

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 5

ESA European Space Agency, Ariane 5 first Atomic Energy of Canada, Therac-25
launch, 1996. Failure: velocity reading radiation therapy machine ‘85-87. Radiation
overflowed 16 bits, triggering an autodestruct. overdoses (x100). Failure: race condition

Bugs In critical systems

http://www.cs.tau.ac.il/~nachumd/horror.html

@ The crashed Sep 1999 due to wrong program units (non-metric).

@ A China Airlines crashes Apr 26, 1994 killing 264.
Recommendations include software modifications.

@ On Oct 24, 2013, a court ruled against in a case of unintended acceleration that
lead to the death of one the occupants. Central to the trial was the Engine Control
Module's (ECM) firmware.

@ 486-DX4s, and Pentium clones had a bug in their floating-point division
algorithm discovered in 1994. Intel set aside US $475 million to cover the costs.

http://en.wikipedia.org/wiki/Atomic_Energy_of_Canada_Limited
http://www.cs.tau.ac.il/~nachumd/horror.html

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--
Bad-design-and-its-consequences

Toyota's killer firmware: Bad design and
its consequences

Michael Dunn - October 28, 2013

92 Comments

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

O Toyota’s electronic throttle control system (ETCS) source code is of
unreasonable quality.

O Toyota’s source code is defective and contains bugs, including bugs that can
cause unintended acceleration.

O A litany of faults were found in the code, including buffer overflow, unsafe
casting, and race conditions between tasks.

O Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-
killing, MISRA-C rule-violating recursion was found in the code, and the CPU
doesn't incorporate memory protection to guard against stack overflow.

0 MISRA-C:1998, in effect when the code was originally written, has 93 required
and 34 advisory rules. Toyota nailed 6 of them.

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

http://www.edn.com/design/automotive/4423428/1/Toyota-s-killer-firmware--Bad-design-and-its-consequences

Formal verification methods

Errors should be eliminated in the design and
iImplementation process (i.e., statically).

When this is not possible, the remaining errors should
be caught at runtime before they occur.

Research existed early on in Computer Science
around theories to prove the quality of complex
concurrent systems. The application to real-life

systems is recent.

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015

Our model checkers:

SPIN (Simple Promela Interpreter)
http://spinroot.com

CBMC (Bounded Model Checker for ANSI-C)
http://www.cprover.org/cbmc/

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 9

http://spinroot.com/
http://www.cprover.org/cbmc/

Model checkers for C/Java

Tool name Tool developer

ASTREE Ecole Normale Supérieure | X | X C (subset)

CODESONAR | Grammatech Inc. X X C, C++, ADA

PolySpace PolySpace Technologies X | X X C, C++, ADA, UML
PREVENT Coverity X X X C, C++, Java

BLAST UC Berkeley/EPF Lausanne| x | X | X X C

F-SOFT (abs) | NEC X X X C

Java PathFind.| NASA X X | X | X Java

MAGIC Carnegie Mellon University | x | X | X x 1 C

SATABS Oxford University X X X X C, C++, SpecC, SystemC
SLAM Microsoft X | X | X X C

SPIN Bell Labs? X | X | X PROMELA, C?

ZING Microsoft Research X | x| % ZING (object oriented)
CBMC CMU/Oxford University X X | X C, C++, SpecC, SystemC
F-SOFT (bmc) NEC X X X C

EXE Stanford University X X X C

SATURN Stanford University X X | X C

Doina Bucur (RUG)

Formal verification: The story about system correctness

[D’Silva, Kroening, Weissenbacher, “A Survey of

Automated Techniques for Formal Software Verification”,

IEEE Transactions on Computer Aided Design. 2008]

Nov 2015

10

Model checking

... a static, model-based, fully automatic,
exhaustive technique for proving absence
of errors in finite-state concurrent systems.

discrete system specification

as state-transition
model

System Model System Property

Model
Checker

Property fulfilled?
“the two traffic lights should never show a green light

at the same time”

yes no

Counter
example

Notification

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 11

The program is modelled as a transition relation:

TesSxS§
'4 b
pre-state post-state

\ {x=0,y=0}

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 12

What specifications?

Take such a model, and ask whether states with the particular
property, say, “ptr==0", are reachable. This is how you check for
NULL-pointer dereferences.

In general, you can check for properties such as:
Can the assert (var != c) be violated?

Can the program deadlock or livelock?

Can an array be accessed out of bounds?

Can this variable overflow?

Can a division by zero happen?

O 0dggyd

O

Temporal properties:
O Does var == c happen eventually?
Will var2 > c only happen after varl > c?
Does var == c¢ happen within 10 seconds from system boot?

Does var == c happen within 10 seconds from system boot
with probability 99%7?

O gd 34d

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 13

In a nutshell: Model checking

Introduced temporal logic into
computing science for
program and systems
verification.

Turing Award 1996.

Amar Pnuel:

Determined validity of a
LTL formula on a finite-
state model.

Turing Award 2007.

Joseph Sifakis

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 14

http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Formal_verification

Runtime checking

... Is a dynamic, model-based, automatic,
exhaustive technique for proving absence
of errors in executions of systems.

system execution
as state-machine model

specification

O

O

System Model

System Property

Model
Checker

Property fulfilled?
“the two traffic lights should never show a green light

at the same time”

yes no
Counter

Notification
example

y
Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 15

Model Checking

In this course:

recommended —+p - \

oA
N
% 7 ok
20

1. You get an intro to the principle and practice of model
checking. You check a model against its specification

both (i) statically (i.e., at system design-time or | " 4
compile-time) and (i) dynamically (i.e., at system SPIN MODEL
runtime). Both build on the same fundamentals. CHI§CKER\

v

2. We cover transition systems, a temporal logic
(LTL) to write specifications, and some checking
algorithms and their complexity. We see how to

. . PRIMER AND REFERENCE MANUAL
automatically extract formal models out of sequential/ Gt PRz
concurrent software.

3. We take examples from the software domain, and
use the model checkers SPIN (now developed at
NASA JPL) and CBMC (Carnegie Mellon, University
of Oxford).

Principles of Model Checking

Christel Baler and Joost-Pieter Katoen

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 16

Some success stories for model checking

NASA runs in-house formal

BMW, GM, Toyota do some
methods group. SPIN is

R&D of verification tools for

developed there. Deep Space 1 Modern OSes and drivers: automotive software.
controls were debugged with Linux, MS Windows.
Spin. Microsoft Research

develops and uses the
SLAM model checker.

- e Intel has a large in-house
Prover Technologies does G verification group.
verification for Airbus control
software, railway/metro
interlocking systems.

Part of the Maeslantkering
decision system was
debugged with SPIN. 17

Some
success stories for

runtime checking

Specifications

Instrumentation
Java Observer

Program
=1 Deadlock
Compile v
-

m

Instrument V
Instrumented
Bytecode Execute
(JVM)

[Java PathExplorer: A Runtime Verification Tool,

- > | Event Stream |- -
Dipatcher

http://ti.arc.nasa.gov/m/pub-archive/archive/0262.pdf.

Experimented with on the NASA Ames K9 Rover Executive.

Generally, search the Intelligent Systems Division at NASA
for applications of verification: http://ti.arc.nasa.gov/

publications/ |

Intelligent Systems Divisions @™

»

18

http://ti.arc.nasa.gov/publications/

Course structure

1 Formal verification: The story about system correctness (this lecture)
2 Modelling systems and model extraction
3 Specifications with Linear Temporal Logic (LTL)
4-5 Model checking for LTL Exam
topics

6 Bounded model checking with SAT
7 Runtime checking for LTL

8 The big picture: other techniques for system analysis and verification

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 19

Where to read more:

Model Checking

rrrrrrrrrrrrr

Some of the content in
this lecture is covered in
Ch.1, Introduction, from
Model Checking, E. M.
Clarke, O. Grumberg, D.
A. Peled.

Doina Bucur (RUG) Formal verification: The story about system correctness

.

THE

SPIN MODE

You find a short history
of SPIN and some
motivation for model
checking in Ch. 1,
Finding Bugs in
Concurrent Systems,
from The SPIN Model
Checker, G. J.

Holzmann.

Principles of Model Checking
C o

bel Baler and Joost-Feebir Kaben

You may also read on
the topic in Ch. 1,
System Verification,
from Principles of
Model Checking, C.
Baier, J.-P. Katoen.

Nov 2015

20

Contact info and
course administration

Course page: doina.net/AR.html

Contact: Doina Bucur <d.bucur@rug.nl>

Assignments: Individual. Have strict deadlines. | count on you

trying to solve these problems through self-study; don’t hesitate to
resort to me for any sort of help.

Use the lab sessions as

help desk for the assignments, and/or

handing-in hour.

Doina Bucur (RUG) Formal verification: The story about system correctness Nov 2015 21

http://doina.net/AR.html
mailto:doinabucur@incas3.eu

